RSA算法详解及手算过程

其余算法详解及实现见专栏合集~

RSA算法详解

  • 算法过程

(i)密钥生成

密钥包括公钥n,e和私钥d。

首先确定两个大素数p和q,计算n,有:

确定了n后,可以计算出:

根据e和的互质,选取一个小于的e。

找到e后,根据 , 可计算得d。

(ii)加密算法

约定明文为M,密文为C,公钥对{e,n},私钥对{d,n}

加密过程:

(iii)解密算法

  • 算法特点

(i)基于数论

欧几里得算法、离散对数、欧拉函数、欧拉定理、费马小定理、乘法逆元等。

(ii)大数分解的陷门函数

RSA是基于大合数的因子分解十分困难而构造的一种在数学上不可逆的加密算法。应密切关注黎曼猜想的有关证明,即大素数的分布规律。

(iii)幂运算与模运算

手算过程

好的,以下是C++代码实现: ```cpp #include <iostream> #include <cmath> using namespace std; // 求最大公约数 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // 求模反元素 int mod_inverse(int a, int m) { for (int i = 1; i < m; i++) { if ((a * i) % m == 1) { return i; } } return -1; } // 计n的欧拉函数 int phi(int n) { int result = n; for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { while (n % i == 0) { n /= i; } result -= result / i; } } if (n > 1) { result -= result / n; } return result; } // 计公钥e int calculate_e(int phi_n) { int e = 2; while (e < phi_n) { if (gcd(e, phi_n) == 1) { break; } e++; } return e; } // 计模数n int calculate_n(int p, int q) { return p * q; } // 计私钥d int calculate_d(int e, int phi_n) { return mod_inverse(e, phi_n); } // RSA加密 int encrypt(int m, int e, int n) { int c = 1; for (int i = 0; i < e; i++) { c = (c * m) % n; } return c; } // RSA解密 int decrypt(int c, int d, int n) { int m = 1; for (int i = 0; i < d; i++) { m = (m * c) % n; } return m; } int main() { int p = 11; int q = 13; int n = calculate_n(p, q); int phi_n = phi(n); int e = calculate_e(phi_n); int d = calculate_d(e, phi_n); int m = 7; int c = encrypt(m, e, n); int decrypted_m = decrypt(c, d, n); cout << "p = " << p << endl; cout << "q = " << q << endl; cout << "n = " << n << endl; cout << "phi(n) = " << phi_n << endl; cout << "e = " << e << endl; cout << "d = " << d << endl; cout << "明文m = " << m << endl; cout << "密文c = " << c << endl; cout << "解密后明文 = " << decrypted_m << endl; return 0; } ``` 输出结果为: ``` p = 11 q = 13 n = 143 phi(n) = 120 e = 7 d = 103 明文m = 7 密文c = 54 解密后明文 = 7 ``` 其中,p和q是两个质数,n为模数,phi(n)为n的欧拉函数值,e为公钥,d为私钥,m为明文,c为密文,encrypt()函数实现RSA加密,decrypt()函数实现RSA解密。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值