Python - conda 常用命令介绍

本文介绍使用conda管理anaconda Python环境的相关命令。

conda 环境相关命令

创建环境

conda create -n env_name python=3.7 --clone another_env

-n:name 表示新环境名称

python:使用python版本

–clone:从现有环境复制而来

删除环境

conda remove -n env_name --all

查看环境

conda env list 

conda info -e

激活环境

conda activate env_name

source activate env_name

退出环境

conda deactivate

source deactivate

会回到base环境

conda 包相关命令

查看当前环境下conda管理的python包列表

conda list

安装python包

conda install package_name #安装包
conda install package_name_1 package_name_2 package_name_3 ... #一次安装多个包
conda install package_name=1.1.0 #安装指定版本的包

更新包

conda update package_name # 更新包
conda upgrade --all #更新所有包

卸载包

conda remove package_name

搜索不清楚名称的包

conda search search_term

conda 重现环境

使用conda管理python一个重要的考量就是可迁移性,conda 提供了几种方法用于重现某个conda 环境。

Clone

上文介绍过这个命令,用于本地重现某个环境

conda create --name new_env --clone old_env

Spec List

相同操作系统的计算机之间复制环境,可以生成 spec list

# 生成 spec list 文件
conda list --explicit > spec-list.txt 
#重现环境:
conda create --name python-course --file spec-list.txt

Environment.yml

使用 -export 选项生成一个 environment.yml 文件,以在不同的平台和操作系统之间复现项目环境。

spec list 文件和 environment.yml 文件之间的区别在于: environment.yml 文件不针对特定操作系统,并且使用YAML格式。environment.yml 仅列出了软件包名称,由 conda 基于软件包的名称构建环境。 另一个区别是 -export 还包括使用pip安装的软件包,而 spec list 则没有。

#导出 environment.yml 文件:
conda env export > environment.yml
#重现环境:
conda env create -f environment.yml

注意:如果当前路径已经有了 environment.yml 文件,conda 会重写这个文件

Conda Pack

上述两种重现的方法都基于记录当前环境包信息,到新机器重建的思路。而Conda Pack用的是将当前环境的文件直接打包,带到新机器拆包使用的思路。

conda-pack 指定平台和操作系统,目标计算机必须具有与源计算机相同的平台和操作系统。

安装 conda pack
# from conda
conda install -c conda-forge conda-pack
# from pip
pip install conda-pack
打包环境
conda pack -n my_env
conda pack -n my_env -o out_name.tar.gz
重现环境
mkdir -p path_to_my_new_env # 建议放在anaconda的envs文件夹中
tar -xzf my_env.tar.gz -C path_to_my_new_env # 解压包中文件
source path_to_my_new_env/bin/activate # 激活该环境
(my_env) $ python # 进入一下该环境下的 python 随后退出
(my_env) $ conda-unpack # 十分重要,请不要忽略
### Conda 常用命令及使用方法 #### 查看已创建的环境列表 为了查看当前系统上所有的Conda环境,可以使用`conda env list`、`conda info -e`或`conda info --envs`这三条命令之一[^1]。 ```bash conda env list ``` #### 获取帮助信息 当遇到不熟悉的命令时,可以通过`conda help`来获取详细的帮助文档[^2]。 ```bash conda help ``` #### 更新Conda本身 保持Conda处于最新版本对于安全性和性能至关重要。通过下面这条命令可实现更新: ```bash conda update conda ``` #### 创建新的虚拟环境 创建一个新的Python环境能够有效隔离不同项目的依赖关系。基本语法如下所示: ```bash conda create --name myenv python=3.8 ``` 这里`myenv`代表新建环境的名字,而`python=3.8`指定了该环境中使用的Python版本号[^3]。 #### 卸载软件包 如果不再需要某个特定的库,则可通过`conda remove`指令将其移除: ```bash conda remove numpy ``` 此操作仅会删除名为numpy的单个包;若要清理整个环境中的所有内容,建议先激活目标环境再执行上述命令。 #### 复制现有环境 有时候希望基于现有的工作空间快速建立另一个相似的工作区,这时就可以利用克隆功能: ```bash conda create --name new_env_name --clone old_env_name ``` 其中`old_env_name`是要复制的目标环境名称,而`new_env_name`则是新生成环境所赋予的新名字[^5]。 #### 安装额外的软件包 向已经存在的环境中添加更多工具或库是一件很常见的事情,比如想要加入pandas这个数据分析库的话,就应当这样做: ```bash conda install pandas ``` 以上就是一些常用的Conda命令介绍以及它们的具体应用方式[^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值