Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding

链接:https://arxiv.org/abs/2502.01563

Motivation:
  • 自注意力模块中的Massive values:研究发现,在基于Transformer架构的LLMs中,自注意力模块的查询(Q)和键(K)中会出现集中分布的巨大值(i.e., magnitudes significantly larger than typical values),而在值(V)中则没有这种模式。这些巨大值对模型的上下文知识理解可能起着关键作用,但其具体作用和形成机制尚不清楚。
  • 量化策略的需求:在实际应用中,为了提高模型的效率和可扩展性,需要对模型进行量化。然而,现有的量化方法在处理这些巨大值时可能会导致性能下降,因此需要深入研究这些值的性质,以便开发更有效的量化策略
Method:

RoPE:旋转位置编码,一种相对位置编码方式。

Massive values 定义:

Disruption of Massive Value

  • 实验设计
    • 数据集选择:选择了多种数据集,包括数学推理基准(GSM-8K、AQUA)、情感分析数据集(IMDB)和合成的密钥检索数据集,以评估模型在上下文知识理解和参数知识检索任务中的表现。
    • 模型选择:选择了多种LLMs,包括Llama、Gemma和Qwen等,这些模型都使用了RoPE(旋转位置编码)。
    • 量化方法评估:评估了三种量化方法(AWQ、SmoothQuant和GPTQ),以了解它们对模型性能的影响。

结论:
  • 巨大值的集中分布:在使用RoPE的LLMs中,Q和K中会出现集中分布的巨大值,而V中则没有这种模式。这些巨大值在不同注意力头中的位置非常接近,且在不同模型中具有一致性。
  • 巨大值对上下文知识理解的重要性:实验表明,巨大值对上下文知识理解任务(如密钥检索、IMDB情感分析和数学推理)至关重要,而对参数知识检索任务(如世界城市知识问答)的影响较小。
  • 量化方法的影响:针对巨大值的量化方法(如AWQ和SmoothQuant)能够更好地保持LLMs的上下文知识理解能力,而忽略巨大值的量化方法(如GPTQ)会导致性能显著下降。
  • 巨大值的起源:文章发现巨大值的集中分布是由RoPE引起的,并且这种现象从模型的最初几层就开始出现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值