题意:有n个城市,m条连接两个城市的道路,每条道路有自己的最大复载量。现在问从城市a到城市b,车上的最大载重能为多少。此题可由floyd算法解.我们用d[i][j]表示从i到j的路径中的负重值最大者.每次用d[i][k]+d[k][j]更新d[i][j]时,我们都用大的值去更新小的值.这样得到的新路径的负重值自然更大.
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#include<string>
#include<map>
map<string,int>a;
#define N 205
const int inf=1<<29;
char s1[N],s2[N],s3[N],s4[N];
int w[N][N],c;
int n,m;
int main()
{
int l=1;
while(scanf("%d%d",&n,&m)!=EOF&&(m||n))
{
int i,j,k;
a.clear();
memset(w,0,sizeof(w));
int t=1;
while(m--)
{
scanf("%s%s%d",s1,s2,&c);
if(!a[s1])
{
a[s1]=t++;
}
if(!a[s2])
{
a[s2]=t++;
}
if(c>w[a[s1]][a[s2]])
{
w[a[s1]][a[s2]]=w[a[s2]][a[s1]]=c;//两条可以折反的路
}
}
for(k=1;k<=n;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
w[i][j]=max(w[i][j],min(w[i][k],w[k][j]));
//1:两条路,取权值较小的那条走。就是min(w[i][k],w[k][j]),没有人愿意去走权值较长的那条吧,傻子差不多
//2:最后题中说了,取负重值最大的那条路。所以取最大:w[i][j]=max(w[i][j],min(w[i][k],w[k][j]));
}
}
}
scanf("%s%s",s3,s4);
printf("Scenario #%d\n",l++);
printf("%d tons\n\n",w[a[s3]][a[s4]]);
}
return 0;
}