Faster R-CNN原文:https://arxiv.org/abs/1506.01497
代码:https://github.com/apache/incubator-mxnet/tree/master/example/rcnn
(Mxnet官方版本中对Faster R-CNN的实现)
Mxnet的安装:https://blog.csdn.net/zyxxlyj/article/details/80764460
1 下载预训练模型和数据集
进入example/rcnn文件夹
1) 安装附加依赖的环境,其中会因为超时多次中断
example/rcnn$:bash script/additional_deps.sh
2) 下载VOC数据集
example/rcnn$:bash script/get_voc.sh
包括:VOCtrainval_06-Nov-2007.tar
VOCtest_06-Nov-2007.tar
VOCtrainval_11-May-2012.tar
3) 下载预训练模型
example/rcnn$: bashscript/get_pretrained_model.sh
4) 训练及测试
example/rcnn$: bash script/vgg_voc07.sh 0,1(use gpu 0 and 1)
执行完之后会在rcnn文件夹中多出data和model两个文件夹。
分别在数据集VOC07和VOC07+VOC12下训练(example/rcnn$: bash script/vgg_voc0712.sh 0,1),并在VOC07的测试集下测试,mAP分别为69.7%和76.1%(论文中为69.9%和73.2%)。
2 测试
mxnet/example/rcnn$python demo.py --prefix final --epoch 0 --image myimage.jpg --gpu 0
000704.jpg前者检测出person*2,horse*1,后者检测出person*2,horse*2,bicycle*1