【MXNet学习25】4.4 测试代码详细解读

本文详细解读了MXNet框架中模型测试的过程,包括模型导入、数据读取和预测输出三部分。在模型导入阶段,讲解了如何利用`load_checkpoint()`接口加载`.params`和`.json`文件。数据读取部分,介绍了如何使用`imread()`接口读取图像并进行预处理。预测输出部分,阐述了`forward()`和`get_outputs()`方法在获取模型预测结果中的作用。
摘要由CSDN通过智能技术生成

4.3节通过代码清单4-2给出了完整的测试代码,与训练代码相比,测试代码相对要简单一些,整体而言只需要导入模型后执行模型的前向计算即可,不涉及损失的反向传播、参数更新等过程。

通过4.3节的介绍,相信你对整个测试代码有了一个直观的认识,接下来我将详细介绍测试代码的内容,主要包含模型导入、数据读取和预测输出三个部分。

4.4.1 模型导入

MXNet框架在训练深度学习模型过程中会保存两个主要文件,即“.params文件”和“.json文件”,前者是模型的参数,后者是模型的网络结构,因此在导入模型时需要同时导入“.params文件”和“.json文件”。在模型训练部分我们介绍了Module对象的fit() 方法,当我们指定fit() 方法的epoch_end_callback参数后,fit() 方法训练模型就能将训练好的“.params文件”和“.json文件”保存在指定目录下。

在测试代码中,可通过如下代码先配置导入模型所需的参数,然后调用load_model()函数导入模型:

 model_prefix = "output/LeNet"
    index 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还能坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值