pytorch Relu

通过非线性变换,将非线性模型映射到另一个空间,转换为线性模型,再来进行线性分类。

大于0的保留原值,小于0的设置为0

 

inplace=True时,input值不会保留

inplace=False时,input值会保留,并可赋给output

代码如下:

import torch
from torch import nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],
                    [-1,3]])

input=torch.reshape(input,(-1,1,2,2))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

输出:

在图像中的显示

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值