通过非线性变换,将非线性模型映射到另一个空间,转换为线性模型,再来进行线性分类。
大于0的保留原值,小于0的设置为0
inplace=True时,input值不会保留
inplace=False时,input值会保留,并可赋给output
代码如下:
import torch from torch import nn from torch.nn import ReLU input=torch.tensor([[1,-0.5], [-1,3]]) input=torch.reshape(input,(-1,1,2,2)) print(input.shape) class Tudui(nn.Module): def __init__(self): super(Tudui, self).__init__() self.relu1=ReLU() def forward(self,input): output=self.relu1(input) return output tudui=Tudui() output=tudui(input) print(output)
输出:
在图像中的显示