【PyTorch】教程:torch.nn.ReLU

torch.nn.ReLU

原型

CLASS torch.nn.ReLU(inplace=False)

参数

inplace ([bool]) – 内部运算,默认为 False

定义

ReLU ( x ) = ( x ) + = max ⁡ ( 0 , x ) \text{ReLU}(x) = (x)^+ = \max(0, x) ReLU(x)=(x)+=max(0,x)

在这里插入图片描述

代码

import torch
import torch.nn as nn

m = nn.ReLU()
input = torch.randn(4)
output = m(input)

print("input: ", input)   # input:  tensor([ 1.5239, -0.5669, -2.8642, -0.0029])
print("output: ", output) # output:  tensor([1.5239, 0.0000, 0.0000, 0.0000])

【参考】

ReLU — PyTorch 1.13 documentation

CReLU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄金旺铺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值