- 博客(44)
- 收藏
- 关注
原创 You Only Look Once:Unified, Real-Time Object Detection-你只看一次:统一的实时对象检测-CVPR-2016
You Only Look Once:Unified, Real-Time Object Detection-你只看一次:统一的实时对象检测-CVPR-2016(论文翻译)
2022-12-02 20:15:49 2298
转载 Pytorch从入门到放弃(2)——迁移学习(基于ResNet18的蜜蜂和蚂蚁分类)
Pytorch从入门到放弃(2)——迁移学习(基于ResNet18的蜜蜂和蚂蚁分类)
2022-11-21 16:09:37 318
原创 (Pytorch)nn.Dropout以及Dropout1d,Dropout2d,Dropout3d是什么意思
(Pytorch)nn.Dropout以及Dropout1d,Dropout2d,Dropout3d是什么意思
2022-11-18 10:37:13 566
转载 CW论文:Towards Evaluating the Robustness
CW论文:Towards Evaluating the Robustness
2022-10-17 21:18:12 348
原创 DeepFool论文翻译---DeepFool: a simple and accurate method to fool deep neural networks
最先进的深度神经网络在许多图像分类任务中取得了令人印象深刻的结果。然而,这些相同的架构已经被证明对于较小的、广受欢迎的图像扰动是不稳定的。尽管这一现象很重要,但还没有提出有效的方法来准确计算最先进的深度分类器对大规模数据集上此类扰动的鲁棒性。本文中,我们填补了这一空白,并提出了DeepFool算法,以有效计算欺骗深度网络的扰动,从而可靠地量化这些分类器的鲁棒性。大量实验结果表明,我们的方法在计算对抗扰动和使分类器更健壮的任务上优于最近的方法。
2022-10-11 09:58:45 1108 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人