POJ-2010-优先队列

题目大意:有c个牛,每个牛有分数c和学费f,现一共总可以提供F的学费给n个牛,问所有情况中c的中位数最大是多少;

题目解析:首先按照c排序,再枚举每头牛作为中位数进行判断,先预处理出L和R数组,代表第i头牛左边和右边n/2头牛f总和的最小值;一开始看着书上以为是二分,还能过,其实是不可以的,因为那个条件不满足二分的性质;

AC代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<queue>
    using namespace std;
    typedef long long ll;
    const int maxn=100010;
    int n,c;
    ll f,L[maxn],R[maxn];
    struct node
    {
        ll c,f;
    }q[maxn];
    bool cmp(node a,node b)
    {
        if(a.c==b.c)
        return a.f<b.f;
        return a.c<b.c;
    }
    void init()
    {
        priority_queue<ll>p;
        ll sum=0;
        for(int i=0;i<c;i++)
        {
            if(i<n/2)
            {
                p.push(q[i].f);
                sum+=q[i].f;
            }
            else
            {
                L[i]=sum;
                sum+=q[i].f;
                p.push(q[i].f);
                sum-=p.top();
                p.pop();
            }
        }
        sum=0;
        while(!p.empty())   p.pop();
        for(int i=c-1;i>=0;i--)
        {
            if(i>c-1-n/2)
            {
                p.push(q[i].f);
                sum+=q[i].f;
            }
            else
            {
                R[i]=sum;
                sum+=q[i].f;
                p.push(q[i].f);
                sum-=p.top();
                p.pop();
            }
        }
    }
    bool ok(int t)
    {
        return L[t]+R[t]+q[t].f<=f;
    }
    int main()
    {
        while(scanf("%d%d%lld",&n,&c,&f)!=EOF)
        {
            for(int i=0;i<c;i++)
                scanf("%lld%lld",&q[i].c,&q[i].f);
            sort(q,q+c,cmp);
            init();
            int ans=-1;
            for(int i=c-1-n/2;i>=n/2;i--)
            {
                if(ok(i))
                {
                    ans=i;
                    break;
                }
            }
            if(ans!=-1)
            printf("%lld\n",q[ans].c);
            else
            printf("-1\n");
        }
        return 0;
    }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值