UVA-10652-凸包

题目大意:平面上给定n个矩形,问用一个面积最小的凸多边形把他们包起来,计算出木板占整个包装面积的百分比;

题目解析:求一个凸包就可以了,注意角度转化;

AC代码:

#include<bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0);
struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
Vector operator + (Vector A,Vector B)   {return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A,Vector B)   {return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A,double p)   {return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A,double p)   {return Vector(A.x/p,A.y/p);}
bool operator < (const Point& a,const Point& b)
{
    return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-10;
int dcmp(double x)
{
    if(fabs(x)<eps) return 0;
    else return x<0?-1:1;
}
bool operator == (const Point& a,const Point& b)
{
    return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}                     //点的点积
double Length(Vector A) {return sqrt(Dot(A,A));}                            //向量的长度
double Angle(Vector A,Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));} //向量之间的角度
double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}                    //点的叉积
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);}                    //三点构成的三角形面积的两倍
Vector Rotate(Vector A,double rad)    {return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));}     //向量逆时针旋转
Vector Normal(Vector A)                                                            //向量的法线
{
    double L = Length(A);
    return Vector(-A.y/L,A.x/L);
}

//定义直线P+tv,计算两直线的交点,前提是两直线不平行
Point GetLineIntersection(Point P,Point v,Point Q,Point w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}
 //点到直线的距离
double DistanceToLine(Point P,Point A,Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1);
}
 //点到线段的距离
double DistanceToSegement(Point P,Point A,Point B)
{
    if(A==B)    return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if(dcmp(Dot(v1,v2))<0)  return Length(v2);
    else if(dcmp(Dot(v1,v3))>0) return Length(v3);
    else return fabs(Cross(v1,v2))/Length(v1);
}
 //点在直线上的投影
Point GetLineProjection(Point P,Point A,Point B)
{
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v));
}
 //判断两直线是否规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
//判断点是否在线段上并且不在线段的端点上
bool OnSegment(Point p,Point a1,Point a2)
{
    return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
}
 //计算多边形的有向面积
 double PolygonArea(Point* p,int n)
 {
     double area=0;
     for(int i=1;i<n-1;i++)
     {
         area+=Cross(p[i]-p[0],p[i+1]-p[0]);
     }
     return area/2;
 }
//凸包
int ConvexHull(Point* p,int n,Point* ch)
{
    sort(p,p+n);
    int m=0;
    for(int i=0;i<n;i++)
    {
        while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)  m--;
        ch[m++]=p[i];
    }
    int k = m;
    for(int i=n-2;i>=0;i--)
    {
        while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)  m--;
        ch[m++]=p[i];
    }
    if(n>1) m--;
    return m;
}
//角度转化成弧度
double torad(double ang)
{
    return ang/180*PI;
}

const int maxn=2500;
Point p[maxn],ch[maxn];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,pc=0;
        double area1=0;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            double x,y,w,h,j,ang;
            scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
            Point o(x,y);
            ang=-torad(j);
            p[pc++]=o+Rotate(Vector(-w/2,-h/2),ang);
            p[pc++]=o+Rotate(Vector(w/2,-h/2),ang);
            p[pc++]=o+Rotate(Vector(-w/2,h/2),ang);
            p[pc++]=o+Rotate(Vector(w/2,h/2),ang);
            area1+=w*h;
        }
        int m=ConvexHull(p,pc,ch);
        double area2=PolygonArea(ch,m);
        printf("%.1lf %%\n",area1*100/area2);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值