Spark CBO CostBasedJoinReorder源码解析

本文深入探讨Spark的Cost-Based Optimizer (CBO)中的Join Reorder策略,尤其是使用动态规划(DP)处理深度在12以内的Join场景。文章指出,当Join树深度位于特定范围时,会采用DP方法,否则采取其他策略。内容包括对源码的分析,以及DP算法在多表Join优化中的应用。
摘要由CSDN通过智能技术生成

1、背景

由于多表join场景下和旅行商问题场景非常相似,故可以用DP来解决。

目前Spark CBO中的JoinReorders只会用DP处理默认深度<=12的join场景,而在[SPARK-27714]中提出了可以用类似于Postgre SQL的GEQO来实现深度较深场景下的JoinReorder(非本文重点,会在后续文章中分析实现)。

2、Code

CostBasedJoinReorder入口,只匹配inner join,然后reorder

reorder中树的深度在(2,`spark.sql.cbo.joinReorder.dp.threshold`]范围内,才会进入dp,否则直接返回(说好的决策树呢??)

dp核心思想参考了论文http://www.inf.ed.ac.uk/teaching/courses/adbs/AccessPath.pdf

在multi-way join中,由低level到高level逐步推算并保证Cost最小。

def search(
      conf: SQLConf,
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值