特征提取_特征选择_降维

本文探讨了特征提取和特征选择的概念,特征提取是通过现有特征创建新特征的过程,而特征选择是从所有特征中挑选最相关的一组。降维则是将高维数据映射到低维空间,特征值会相应变化。特征选择则保留原特征值,但维数减少。
摘要由CSDN通过智能技术生成

特征提取、特征选择、特征降维的区别
特征选择与特征降维的差别

1.特征提取和特征选择

特征提取/特征抽取(feature extraction):Creatting a subset of new features by combinations of the existing features.

  • 即通过原来存在的特征的集合创造一个新的特征子集。这里的创造就是重点,即经过特征提取以后的新特征是原来特征的一个映射,创造凝练出了新的特征出来,比如图片是由像素点组成的,但是经过特征提取,变成了数值矩阵,这就是变成了新的映射。
  • 还有的说法是,特征提取的过程是将机器学习算法不能识别的原始数据转化为算法可以识别的特征的过程。其实内涵是一样的,即根据原始的d个特征的组合形成k个新的特征,将数据从d维空间映射到k维空间,改变了数据的性质。

特征选择(feature selection):choosing a subset of all the features(the ones more informative)
即从原来的特征中选择出子集。这里的特征只是被选择出来,性质和原来的特征是一致的。

2. 特征选择和降维

降维

  • 本质上是从一个维度空间映射到另一个维度空间,特征的多少别没有减少,当然在映射的过程中特征值也
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值