特征提取、特征选择、特征降维的区别
特征选择与特征降维的差别
1.特征提取和特征选择
特征提取/特征抽取
(feature extraction):Creatting a subset of new features by combinations of the existing features.
- 即通过原来存在的特征的集合创造一个新的特征子集。这里的创造就是重点,即经过特征提取以后的新特征是原来特征的一个映射,创造凝练出了新的特征出来,比如图片是由像素点组成的,但是经过特征提取,变成了数值矩阵,这就是变成了新的映射。
- 还有的说法是,特征提取的过程是将机器学习算法不能识别的原始数据转化为算法可以识别的特征的过程。其实内涵是一样的,即根据原始的d个特征的组合形成k个新的特征,将数据从d维空间映射到k维空间,改变了数据的性质。
特征选择
(feature selection):choosing a subset of all the features(the ones more informative)
即从原来的特征中选择出子集。这里的特征只是被选择出来,性质和原来的特征是一致的。
2. 特征选择和降维
降维
- 本质上是从一个维度空间映射到另一个维度空间,特征的多少别没有减少,当然在映射的过程中特征值也