决策树(基础理论篇)

2. 决策树

2.1 工作原理

决策树(decision tree)是一种基本的分类与回归方法。举个通俗易懂的例子,如下图所示的流程图就是一个决策树,

  • 长方形代表判断模块(decision block)
  • 椭圆形成代表终止模块(terminating block),表示已经得出结论,可以终止运行。
  • 从判断模块引出的左右箭头称作为分支(branch),它可以达到另一个判断模块或者终止模块。
    在这里插入图片描述

2.2 决策树的一般流程

2.2.1 知识补充

信息熵
集合信息的度量方式称为香农熵或者简称为熵(entropy).

熵定义为信息的期望值。在信息论与概率统计中,熵是表示随机变量不确定性的度量。如果待分类的事物可能划分在多个分类之中,则符号xi的信息定义为
在这里插入图片描述

经验熵
当熵中的概率由数据估计(特别是最大似然估计)得到时,所对应的熵称为经验熵(empirical entropy)。

什么叫由数据估计?比如有10个数据,一共有两个类别,A类和B类。其中有7个数据属于A类,则该A类的概率即为十分之七。其中有3个数据属于B类,则该B类的概率即为十分之三。浅显的解释就是,这概率是我们根据数据数出来的。我们定义贷款申请样本数据表中的数据为训练数据集D,则训练数据集D的经验熵为H(D),|D|表示其样本容量,及样本个数。
设有K个类Ck, = 1,2,3,…,K,|Ck|为属于类Ck的样本个数,因此经验熵公式就可以写为 :
在这里插入图片描述

条件熵

条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性,随机变量X给定的条件下随机变量Y的条件熵(conditional entropy)H(Y|X),定义为X给定条件下Y的条件概率分布的熵对X的数学期望
在这里插入图片描述
同理,当条件熵中的概率由数据估计(特别是极大似然估计)得到时,所对应的条件熵称为条件经验熵

信息增益

信息增益是相对于特征而言的。所以,特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即:
在这里插入图片描述
一般地,熵H(D)与条件熵H(D|A)之差称为互信息(mutual information)。决策树学习中的信息增益等价于训练数据集中类与特征的互信息。

信息增益率

2.2.1 构建决策树

2.3 决策树的优缺点

优点:

  • 数据形式非常容易理解
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值