32、模糊非对称GARCH模型与短文本片段模糊层次聚类方法

模糊非对称GARCH模型与短文本片段模糊层次聚类方法

一、模糊非对称GARCH模型

1.1 模型误差分析

在对俄罗斯股票指数波动性进行预测时,对多种清晰和模糊非对称GARCH模型进行了比较分析。结果显示,所提出的模型1和模型2在预测RTS指数和MICEX指数时,误差百分比非常小。模型1和模型2(以GJR - GARCH模型形式)分别在RTS和MICEX指数上表现最佳。模糊模型也有不错的结果,但成员函数未经过优化,规则是通过模型学习而非专家信息获得。

以下是各模型在MICEX和RTS指数上的误差情况:
| 指数 | 模型 | MSFE | MAFE | LAFE |
| — | — | — | — | — |
| MICEX指数 | GJR - GARCH | 1.25E−7 | 3.10E−4 | 5.37E−4 |
| | 模糊GJR - GARCH | 4.99E−9 | 5.27E−5 | 1.11E−4 |
| | 模型1 | 3.90E−8 | 1.58E−4 | 3.47E−4 |
| | 模型2 | 2.69E−9 | 4.87E−5 | 7.42E−5 |
| | 模型3 | 1.95E−6 | 1.22E−3 | 2.14E−3 |
| RTS指数 | GJR - GARCH | 7.20E−7 | 8.13E−4 | 1.21E−3 |
| | 模糊GJR - GARCH | 7.35E−7 | 7.80E−4 | 1.12E−3 |
| | 模型1 | 3.84E−7 | 5.53E−4 | 8.13E−4 |
| | 模型2 | 6.03E−7

内容概要:本文围绕动态环境下多无人机系统的协同路径规划防撞技术展开研究,基于Matlab代码实现相关算法仿真。研究重点包括在复杂、动态环境中实现多无人机的安全、高效路径规划,避免飞行过程中发生碰撞,同时优化飞行轨迹协同控制策略。文中结合智能优化算法路径规划技术,如TSP、VRP变种、三维路径规划等,提出适用于无人机编队协同任务的解决方案,并提供完整的Matlab代码支持,便于科研复现进一步开发。此外,文档还展示了团队在智能优化、机器学习、信号处理、电力系统等多个科研领域的技术积累资源支持。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能动态环境下多无人机系统的协同路径规划防撞研究(Matlab代码实现)优化算法研究的科研人员或研究生;对多智能体协同、防撞算法及仿真实现感兴趣的工程技术人员。; 使用场景及目标:① 实现动态环境中多无人机系统的实时路径规划避障;② 掌握基于Matlab的无人机协同控制仿真方法;③ 借助提供的代码资源开展算法优化、科研复现或项目开发;④ 拓展智能优化算法在无人系统中的应用。; 阅读建议:建议结合文档中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注算法实现逻辑仿真流程,同时可参考团队在路径规划优化算法方面的其他案例,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值