模糊非对称GARCH模型与短文本片段模糊层次聚类方法
一、模糊非对称GARCH模型
1.1 模型误差分析
在对俄罗斯股票指数波动性进行预测时,对多种清晰和模糊非对称GARCH模型进行了比较分析。结果显示,所提出的模型1和模型2在预测RTS指数和MICEX指数时,误差百分比非常小。模型1和模型2(以GJR - GARCH模型形式)分别在RTS和MICEX指数上表现最佳。模糊模型也有不错的结果,但成员函数未经过优化,规则是通过模型学习而非专家信息获得。
以下是各模型在MICEX和RTS指数上的误差情况:
| 指数 | 模型 | MSFE | MAFE | LAFE |
| — | — | — | — | — |
| MICEX指数 | GJR - GARCH | 1.25E−7 | 3.10E−4 | 5.37E−4 |
| | 模糊GJR - GARCH | 4.99E−9 | 5.27E−5 | 1.11E−4 |
| | 模型1 | 3.90E−8 | 1.58E−4 | 3.47E−4 |
| | 模型2 | 2.69E−9 | 4.87E−5 | 7.42E−5 |
| | 模型3 | 1.95E−6 | 1.22E−3 | 2.14E−3 |
| RTS指数 | GJR - GARCH | 7.20E−7 | 8.13E−4 | 1.21E−3 |
| | 模糊GJR - GARCH | 7.35E−7 | 7.80E−4 | 1.12E−3 |
| | 模型1 | 3.84E−7 | 5.53E−4 | 8.13E−4 |
| | 模型2 | 6.03E−7
订阅专栏 解锁全文
49

被折叠的 条评论
为什么被折叠?



