基于聚类头选择算法的优化技术在支持5G的物联网医疗智能医疗保健框架中的工业应用
摘要
由于医疗物联网(IoMT)设备的快速普及,医疗物联网通信已成为第五代移动通信技术(5G)无线通信网络在医疗保健领域中日益重要的组成部分。在当前的网络架构下,大量接入的IoMT设备导致系统过载和能效低下。基于5G的IoMT系统旨在更长久地保护医疗保健基础设施和医疗设备功能。因此,采用高效的通信协议对于提升物联网医疗系统中的服务质量(QoS)至关重要。近年来已开发出多种方法以改善IoMT的服务质量(QoS),但聚类方法因其在医疗应用中提供的高能效而更受欢迎。现有聚类技术的主要缺点在于其通信模型未考虑丢包率的可能性,从而导致通信不可靠并消耗医疗节点的能量。在本研究中,我们专注于设计一种名为鲸鱼优化加权模糊聚类头选择算法的聚类模型,以促进基于物联网医疗的系统的成功通信。实验研究表明,所提出的方法在服务质量(QoS)方面优于对比方法。由此推断,该提出的方法不仅减少了基于第五代移动通信技术的物联网医疗系统的能量消耗水平,还能在网络中均匀分布簇头以提高服务质量(QoS)。
关键词 :计算机网络,人工智能,医疗物联网,服务质量(QoS),WOWF‐CHSA
1 引言
由互联的医疗设备和软件组成的网络被称为医疗物联网(IoMT),可实现医疗记录的共享。例如,通过安全网络传输医疗数据,加强医生与患者之间的沟通,可以减少需要住院治疗的人数。医疗物联网对存储容量、处理速度、电池寿命和网络可靠性有较高要求。由于第五代移动通信技术(5G)具备高速性能,因此可用于人类医疗保健中的诊断与治疗[1]。医疗物联网(IoMT)一词用于描述在医疗保健中使用的联网电子设备系统。借助设备和传感器的互操作性,医疗服务提供者能够改善临床运营和工作流程管理,并实现远程患者健康监测。医疗物联网弥合了虚拟世界与现实世界之间的差距,通过更快速、更准确的诊断和治疗,以及实时监测行为和生理变化,提升患者的健康水平。医疗设备日益互联互通,对患者和医生均产生了重大影响[2]。作为连接医疗软件和硬件应用的全球基础设施,医疗物联网正在改变全球医疗保健的提供方式。医疗物联网(IoT)是医疗物联网(IoMT)的另一个名称。医疗物联网使用多种类型的传感器来监测患者的生命体征,例如加速度计、视觉传感器、温度传感器、二氧化碳传感器、超声心动图传感器、压力传感器和陀螺仪检测器,以及血氧水平传感器、湿度传感器、呼吸传感器和血压传感器。通过使用远程云数据中心,医疗物联网可以检测患者的健康状况,并将该信息传递给医疗专业人员和负责患者护理的人员[3]。远程监控医疗系统的能力是医疗物联网日益流行的主要因素。这带来了连锁效应,提升了医疗保健质量,包括响应时间、疾病诊断准确性和在紧急情况下的治疗交付,其中最重要的是治疗交付。一个便于跟踪患者、医生、处方、药品和医疗设备的医疗监控系统,对于普适计算具有重要意义。通过使用机器学习,医疗物联网可以以一种系统化的方式得到发展,有望很快超越人类能力[4]。医疗物联网在医疗系统中的应用如图1所示。
互联的医疗硬件和软件的集合被称为物联网医疗系统。患者、医疗保健-提供者、研究人员和支付方均可从物联网医疗系统中获益匪浅。一些应用实例包括远程医疗援助、数据洞察、处方管理、手术增强、患者和工作人员流跟踪,以及保险理赔处理[5]。以下是使用物联网医疗系统时可能出现的一些问题。在开发物联网医疗系统基础设施时,牢记这些问题至关重要。无线医疗设备的使用引发了安全问题。实施物联网医疗系统面临确保不同制造商生产的设备之间连接互操作性的困难-挑战企业。物联网医疗系统是一种医疗分析技术的软件应用,临床医生需要接受培训以使用该系统的应用程序和软件。
网络间数据传输面临的最大挑战是确保传输信息的安全性。依赖集中式云的物联网医疗平台和应用存在安全风险。现有方法提出了使用区块链技术的安全机制,以保障物联网医疗中传输数据的隐私性、真实性和完整性。然而,由于资源需求较高,基于区块链的解决方案在物联网医疗终端设备上实施较为困难。因此,本文提出了一种用于支持5G的物联网医疗的鲸鱼优化加权模糊聚类头(CH)选择算法。
2 我们的贡献
- 德国法兰克福医院糖尿病数据集(HFGCC)和皮马印第安人糖尿病数据集(PIDD)包含从Kaggle数据集收集的2000名患者糖尿病和非糖尿病数据集。
- 基于鲸鱼优化加权模糊的簇头选择算法(WOWF‐CHSA)被用于提升基于物联网医疗的系统在第五代移动通信技术网络上的高效通信。
- 低开销多跳路由协议设计用于第五代移动通信技术网络中的设备到设备(D2D)通信。
- 蜘蛛猴优化(SMO)被用于进一步提高物联网医疗在第五代移动通信技术网络中的通信效率。
本文其余部分安排如下:第3节介绍相关工作,第4节解释实验流程,第5节展示本研究结果,第6节总结本文。
3 相关工作
本文综述了多位作者撰写的研究论文和技术报告。讨论了分散式和集成式系统的困难,其他作者提出了相应的解决方案。前一篇文章[6]提出了一种新颖的聚类优化方法,该方法考虑了通信距离、节点密度、速度、方向和网格大小。通过为车载自组织网络中的聚类开发的鲸鱼优化方法,选出了智能且能力强的簇头。之前的研究[7]介绍了由第五代移动通信技术赋能的物联网医疗系统设备的基础设施、设计和使用案例。本研究不仅讨论了第五代移动通信技术赋能的物联网对智能医疗系统的好处,还比较和对比了为此目的可用的各种无线通信技术。
文中探讨了第五代移动通信技术赋能的物联网医疗系统技术及其需求的必要性和影响。参考文献[8]深入探讨了鲸鱼优化算法(WOA)及其变体和混合形式在各种工程学科中的应用。同时讨论了进一步研究的前景、威胁和局限性。先前的文章[9]创建了一种医疗应用聚类模型(CMMA),可用于选择簇领导者并促进基于IoMT的软件中的高效通信。实验结果分析表明,所提出的CMMA在寿命和效率方面均优于现有方法。因此,该提出的CMMA不仅通过在网络中均匀分布簇头节点来延长网络寿命,还降低了基于边缘的IoMT系统的能量消耗。IoMT架构如图2所示。
上一篇文章[10]研究了IoMT中路由协议和服务质量的发展,包括传统方法和前沿-创新。这些协议的设计旨在满足当前和未来IoMT网络的需求,包括处理多种数据类型、高数据量以及功耗问题的能力。上一篇文章[11]根据威胁的主要安全目标对边缘网络环境中的安全风险进行了分类。此外,基于现有研究,提出了针对对IoMT边缘网络攻击的安全对策分类法。本研究的目的是为今后开展高效安全对策以保护IoMT边缘网络免受内部以及外部攻击。先前的研究[12]提出了用于医疗物联网的模糊逻辑聚类技术(FC‐IoMT),这是一种基于模糊逻辑的强大聚类方法,适用于IoMT应用。CHs通过所提供的FC‐IoMT方法,利用以下五个输入进行选择:能量、距离、延迟、容量和队列。采用FC‐IoMT方法,可以显著降低IoMT系统的能耗。本文通过利用物联网提升可穿戴设备的质量和效率,全面概述了第五代移动通信技术如何颠覆医疗保健行业。此外,我们还详细介绍了一种先进的5G传感器节点架构,用于患者的无创健康监测。
先前的研究[22]提出了一种新颖且高效的早期乳腺癌诊断与预后方法。他们还将预测算法获得的准确率与标准卷积神经网络及其他现有分类器进行了比较,结果表明该方法在各方面均表现出色。先前的研究[23]讨论了物联网及其他技术在当今医疗保健中的应用。由于当前对敏感数据传输的高度关注,我们主要聚焦于基于物联网的医疗保健系统的安全性。研究识别了医疗行业中存在的主要安全与隐私问题,并对其进行了比较分析,同时探讨了一个医疗安全案例研究。先前的研究[24]介绍了医疗领域中各种机器学习(ML)趋势,并探讨了其对人工智能(AI)在该行业发展和应用的影响。人工智能可应用于医疗领域、医院及保险行业。智慧医疗这一理念在全球多个国家医疗保健行业中广为认同,即以患者为中心,利用创新手段改善治疗效果,即使在医院之外也是如此。先前的研究[25]提出了一种新型资源高效的流支持分布式移动锚定范式。无线互联网协议被认为是对这些问题的一种解决方案,而网络移动性基本支持协议旨在为其提供支持。然而,在切换阶段由于患者需求广泛,发现了无线链路方面的问题。研究[26]讨论了医疗物联网领域的最新进展,特别强调了人工智能所起的作用。文中还讨论了必要的硬件,以及最近提出利用人工智能解决医疗物联网问题的研究成果。同时列出了主要的优势与劣势。此外,还对可穿戴医疗设备(WMDs)进行了分析。技术也被用于可穿戴医疗设备的分类。参考文献[27]提出了一种基于边缘计算的医疗物联网系统架构,并讨论了与其实施相关的研究挑战。由人工智能驱动的边缘计算在智能医疗系统的超可靠通信网络中做出了重要贡献,特别是在降低延迟、提高设备连接性和加快数据传输速度方面。该研究提出了FairHealth,这是一种处于第五代移动通信技术前沿并由长期比例公平性驱动的医疗系统。接着,他们通过设计一种基于李雅普诺夫的比例公平资源调度方法,在服务稳定性与公平性之间实现了权衡。该方法将长期公平性问题与单时隙子问题分离开来。先前的研究[28]提出了一种用于区块链网络上医疗物联网数据的搜索认证框架,该框架利用第五代移动通信技术和边缘计算来保护用户隐私。该框架采用一种高效的多重签名方法,为存储在5G边缘区块链上的医疗物联网数据创建了万无一失的搜索结果认证机制。
先前的研究[29]探讨了支持边缘的医疗物联网系统的适用性及其在医疗保健领域的诸多卓越前景。借助增强的组织能力以及各种各样的设备和传感器,可实时捕捉、诊断和监测患者的健康状况,如活动、语音信号、体温、高血压、血糖水平和脉搏率等。该技术还可用于治疗心脏病发作、癔症、焦虑和癫痫等危急情况下的患者。先前的研究[30]提出了一种基于5G的智能医疗信息基础设施设计,并定义了一种名为智能医疗专用云平台的新型网络元素,所有这些元素协同工作,既能满足各个医院的需求,又能支持扩展。此外,还给出了实现所使用的方法及相关现场测试的结果,展示了所开发的新系统架构在网络性能方面带来的显著改进[31]。
4 实验程序
本节概述了提出的程序的整体流程(图3)。所建议技术的示意图包括医疗物联网数据采集、WOWF‐CHSA、低开销多跳路由协议和SMO等过程。
4.1 数据收集
我们在三个不同的糖尿病疾病数据集上对预测场景进行了测试:由Kaggle托管的德国法兰克福医院糖尿病数据集(HFGDD)、由UCI‐ML仓库托管的PIDD,以及两者的综合糖尿病数据集(IDD)。HFGDD和PIDD均包含2000人和九列;然而,PIDD仅包含768名患者。二元结果列中有两个可能的组,“0”表示无糖尿病,“1”表示患有糖尿病。此外,HFGDD包含1316名非糖尿病患者和684名糖尿病患者,而PIDD包含500名非糖尿病患者和268名糖尿病患者。实验中使用的IDD是通过融合这两个数据集的特征构建而成。所有数据集(包括含有缺失值的数据集)均可使用提出的滤波和归一化方法。数据集描述见于表1。IDD包含2768个独立病例,每个病例都有其特殊属性。数据集特征的描述见表2[13–21]。
| 数据集 | 特征数量 | 实例数量 |
|---|---|---|
| HFGDD | 九个(其中八个作为输入) | 768(500名健康者和268名糖尿病患者) |
| PIDD | 九个(其中八个作为输入) | 200(1,316名健康者和684名糖尿病患者) |
| IDD | 九个(其中八个作为输入) | 768(1,816名健康者和952名糖尿病患者) |
表1:数据集描述
| 序号 | 特征 | 解释 | 数值 |
|---|---|---|---|
| 1. | 妊娠次数 | 女性怀孕的次数 | 数值(介于0到17之间) |
| 2. | 葡萄糖 | 口服葡萄糖耐量试验后2小时测定血浆葡萄糖浓度 | 数值(介于0到199之间) |
| 3. | 血压 | 舒张压(单位:mmHg) | 数值(介于0到122之间) |
| 4. | 皮肤厚度 | 三头肌皮褶厚度(单位:mm) | 数值(介于0到99之间) |
| 5. | 胰岛素 | 2小时血清胰岛素(单位:μU/mL) | 数值(介于0到846之间) |
| 6. | 体重指数 | 身体质量指数(体重kg/身高m²) | 一个数值(介于14至80.6之间) |
| 7. | 糖尿病家族史函数 | 糖尿病家族史 | 一个数值(介于0.078至2.42之间) |
| 8. | Age | 以年为单位的年龄 | 一个数值(介于1至120之间) |
| 9. | 结果 | 糖尿病诊断 | 0:健康 和 1:糖尿病患者 |
表2:数据集特征的描述
4.2 鲸鱼优化的加权模糊聚类头选择算法
“鲸鱼优化算法”是一种前沿的元启发式优化技术,它模拟了鲸鱼巧妙的气泡网捕猎策略。为了获得真正的最优解,基于种群的WOA能够避开次优解。由于这些优点,WOA是解决各种约束和无约束优化问题的合适算法。在无需对算法进行任何根本性修改的情况下,该方法可应用于实际场景。当应用基于权重的模糊聚类时,由于合适的权重接近零或等于零,这些簇对最终模糊划分的贡献将被消除。本文将鲸鱼优化算法(WOA)应用于聚类问题并寻求解决方案。借鉴聚类主题,我们可以假设搜索代理代表k个不同簇的中心。以下是每个搜索代理 Yj 的结构设计。
$$
Y_j = (X_{j1}, X_{j2}, …, X_{jk})
$$
其中,$X_{ji}$ 是第 $i$ 个搜索代理在簇 $c_{ji}$ 中的中心向量。因此,群体是数据集中向量的潜在簇的集合。模糊加权技术作为一种解决层次化评估问题的流行方法,在评分、加权和聚合过程中考虑了模糊准则。
鲸鱼优化算法聚类算法从理论角度来看,兼具探索和开发能力,可被视为一种全局优化器。通过动态地调整搜索向量A,鲸鱼优化算法聚类算法可以轻松在空间探索与开发之间切换。因此,随着A的减小,更多的迭代用于探索,而用于开发的迭代则减少。
4.3 低开销多跳路由协议
设计一种满足多种且常常相互冲突的性能指标的低开销设备到设备通信多跳路由策略是一个重大挑战。以下是所提出的多跳路由协议的基本概念。
在路径发现过程中,基站(BS)的参与程度最多也只是最低限度。这将确保基站不会过载,并且路由发现过程尽可能少地使用网络资源。通过基站(或蜂窝第五代移动通信技术基础设施)来维护设备到设备(D2D)会话以及D2D会话内部路由信息的最新记录。最近一次路由发现过程的结果必须存储在网络中可靠且稳定的节点上,例如基站(BS)。对传统的动态源路由(DSR)进行修改以包含第五代移动通信技术中的D2D通信,从而形成一种简单、低开销的路由发现与路由管理技术。动态源路由(DSR)的重要特性未被改变。减少了在整个网络中广播的路由请求数据包的数量。这将确保在查找新路由时有效利用网络资源。
4.4 SMO
蜘蛛猴的协作行为启发了SMO,这是一种基于种群的算法。该算法模拟了具有裂变‐融合社会结构并能智能觅食的蜘蛛猴的行为。在裂变‐融合社会结构中,来自更大或永久性群体的成员之间会临时形成小规模的聚集群体。根据食物的可获得性和丰富程度,猴子会形成大小不同的群体。
- 裂变-融合社会结构解释了这些生物为何生活在由40至50名成员组成的稳定群体中。
- 在寻找新的食物来源时,由一名资深雌性首领带领该组。这被视为全球主导地位的范例。每当她无法为该组找到足够的食物时,她便会将该组分裂
分成更小的子群体(通常由三到八名个体组成),各自外出寻找食物。
- 每个子群体的日常觅食路线由一位雌性首领规划和决定。因此,我们将这种领导者称为“局部领导者”。
- 群体成员使用特殊叫声在远距离之间相互交流。每只蜘蛛猴发出独特的叫声,其身份可被群体中的其他成员快速识别。这有助于蜘蛛猴维持它们的社群并建立安全区域。
以下数据揭示了蜘蛛猴社会内部的运作机制及其独特的行为方式。
- 大约有40到50只蜘蛛猴在野外相互呼唤为家。
- 白天,这群蜘蛛猴的成员会分成小群体朝不同方向觅食,然后晚上返回栖息地分享它们的发现。
- 在规划觅食行程时,优势雌性蜘蛛猴负责主导。
- 如果领导者无法找到足够的食物,她会将组分成更小的组,并派遣每个小组各自独立觅食。
- 由于彼此之间的宽容,社会成员可能不会聚集在同一地点附近。当它们互动时,从它们的肢体语言可以明显看出它们是一个大群体。
蜘蛛猴通过肢体语言来传达其想法和观察结果。它们通过独特的叫声(如吼叫和叽喳声)在远距离进行交流。群体中的每只猴子都可以通过其独特的叫声来识别。
在启动过程中,SMO 创建了一个由N只蜘蛛猴组成的群体,这些蜘蛛猴呈均匀分布,其中SMi表示群体中的第 i只蜘蛛猴。每只SMi的初始化参数如下:
$$
SM_{ij} = SM_{jmin} + U(0, 1) \times (SM_{jmax} - SM_{jmin})
$$
当U(0, 1)是介于0和1之间的随机数时,$SM_{jmin}$ 和 $SM_{jmax}$ 分别表示第j维的最小值和最大值。
蜘蛛猴的社会位置可能会根据领导者和组在该区域的先前经验而发生变化。每只蜘蛛猴的新位置都会被评估,以确定其适应度值是否大于其先前位置。这是位置更新方程的一个示例。
$$
SM_{new,ij} = SM_{ij} + U(0, 1) \times (LL_{kj} - SM_{ij}) + U(-1, 1) \times (SM_{rj} - SM_{ij})
$$
其中 $LL_{kj}$ 表示第j维的第k组的局部领导者,$U(-1, 1)$ 是在区间(-1, 1)内均匀分布的随机变量,而 $SM_{rj}$ 是第j维中从第k组选定的SM在 $r \neq i$ 时的值。
所有在方程中使用的符号都应在以下文本中定义。
5 结果
本节介绍推荐框架的总体行为。吞吐量、端到端延迟、丢包率或数据包投递率等参数在图5至图8中进行了比较。
包括车辆聚类协议(VCP)、自适应加权聚类协议(AWCP)、增强型鲸鱼优化算法(EWOA)以及基于鲸鱼算法的自适应加权聚类协议(AWCP‐WA)。表3展示了提出的和现有方法的比较。
系统的吞吐量是指其处理数据的速率,以单位时间内处理的数据单元数量来表示。图5显示,与现有方法相比,提出的WOWF‐CHSA方法具有较高的吞吐量。
图6表示采用提出的方法和现有方法的端到端延迟结果。根据上述图表,所提出的鲸鱼优化加权模糊聚类选择方法的丢包率比现有方法低58%。
数据包投递率可以通过将目的地接收到的数据包总数除以源发送的总数据包数来计算。该指标用于监控发送后有多少信息被正确传递。图8表明,与现有方法相比,所提出的方法具有96%的高数据包投递率。
参数表明,所提出的方法优于现有方法,而现有方法存在若干深层问题。以下是现有策略的一些问题。该问题通过VSP得以解决[14],它在簇头选择过程之前通过滤除潜在危险的邻近车辆来消除这些车辆。此外,解决此问题的一个方案是为每个簇中允许的车辆总数设置上限和下限。能够容纳的最大车辆数fit簇内的簇大小由一个称为簇大小的参数决定。由于存在相互竞争的目标以及大量可能的AWCP设计,因此建立了一个多目标优化问题[15,16]。由于入侵检测与防御系统的功能有限,导致检测率显著下降。解决此安全问题的最有效方法是最大化这些相互竞争的需求[17]。
AWCP的输入被馈入该优化问题中,旨在最大化数据投递率、最小化聚类开销,并生成稳定的簇拓扑结构。我们确定所提出的方案优于现有使用的技术,因为它克服了现有使用方法中的局限性。
6 结论
随着医疗物联网设备数量的持续增长,医疗物联网通信已成为医疗保健行业中第五代移动通信技术无线通信网络日益重要的一部分。该提出的方法基于簇头选择,有效应对了医疗物联网设备最关键的方面。集群中的某些节点作为簇头节点,负责收集集群中其他节点的信息。
此外,结果在吞吐量、数据包丢失、数据包投递率和端到端时间方面与现有方法进行了比较。我们建议的方法优于目前使用的其他方法。通过阐明物联网在医疗保健领域的巨大潜力,并突出医疗物联网未来发展中的最重要挑战,我们希望本研究能为学术界和专业人士提供帮助。我们提出了用于支持第五代移动通信技术的医疗物联网的鲸鱼优化加权模糊型簇头选择算法。HFGCC和PIDD包含从Kaggle数据集收集的2000名患者糖尿病和非糖尿病数据集。本研究旨在提高基于第五代移动通信技术网络的医疗物联网系统通信效率,该系统采用鲸鱼优化加权模糊型簇头选择算法、低开销多跳路由协议和SMO开发而成。实验结果以吞吐量、端到端延迟、数据包丢失和数据包投递率的形式给出。提出了一种WOWF‐CHSA方法,其实验结果为96%的吞吐量、50%的端到-end延迟、58%的数据包丢失和96%的数据包投递率。所提出的方法优于现有方法。我们强调了第五代移动通信技术及其使能技术的重要性,以解决当前网络的问题和限制。
| 方法 | 吞吐量 (%) | 端到端延迟 (%) | 数据包丢包率 (%) | 数据包投递率 (%) |
|---|---|---|---|---|
| VCP | 55 | 94 | 94 | 75 |
| AWCP | 75 | 75 | 85 | 66 |
| EWOA | 67 | 68 | 68 | 84 |
| AWCP‐WA | 85 | 85 | 77 | 56 |
| WOWF‐CHSA (提出的) | 96 | 60 | 58 | 96 |
表3:提出的与现有方法的比较
问题和当前网络的约束。最后,我们主要关注未来如何利用第五代移动通信技术来识别疾病风险,并通过广泛自动化和日益数字化,构建一个能够应对这些风险的社会。
鲸鱼优化聚类头选择算法
1156

被折叠的 条评论
为什么被折叠?



