In a billiard table with horizontal side a inches and vertical side b inches, a ball is launched from the middle of the table. After s > 0 seconds the ball returns to the point from which it was launched, after having made m bounces off the vertical sides and n bounces off the horizontal sides of the table. Find the launching angle A (measured from the horizontal), which will be between 0 and 90 degrees inclusive, and the initial velocity of the ball.
Assume that the collisions with a side are elastic (no energy loss), and thus the velocity component of the ball parallel to each side remains unchanged. Also, assume the ball has a radius of zero. Remember that, unlike pool tables, billiard tables have no pockets.
Input
Input consists of a sequence of lines, each containing five nonnegative integers separated by whitespace. The five numbers are: a, b, s, m, and n, respectively. All numbers are positive integers not greater than 10000.
Input is terminated by a line containing five zeroes.
Output
For each input line except the last, output a line containing two real numbers (accurate to two decimal places) separated by a single space. The first number is the measure of the angle A in degrees and the second is the velocity of the ball measured in inches per second, according to the description above.
Sample Input
100 100 1 1 1 200 100 5 3 4 201 132 48 1900 156 0 0 0 0 0
Sample Output
45.00 141.42 33.69 144.22 3.09 7967.81 题意: 在一个给定长和宽的长方形中放一个小球,以一定的角速度和角度出发,分别碰转(不计能量的损失)长和宽n和m次,并给出时间。 求出小球的初速度和角度? 总的水平距离:(与垂直边碰撞的次数乘以水平边的长度) s1 =a * m 总的垂直距离:(与水平边碰撞的次数乘以垂直边的长度) s2 = b * n#include<stdio.h> #include<math.h> #include<string.h> #include<iostream> #define pi 3.1415927 using namespace std; int main(){ double a,b,s,m,n; while(scanf("%lf%lf%lf%lf%lf",&a,&b,&s,&m,&n) != EOF) { if(a == 0 && b == 0 && s== 0 && m == 0 && n== 0) break; double S = sqrt((a * m) * (a *m) + (b *n)*(b*n)); double t = S / s; double j = atan((b * n)/(a *m)); j = j * 180 / pi; printf("%.2lf %.2lf\n",j,t); } return 0; }