UVA - 101 The Blocks Problem

Background 

Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.

In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will ``program'' a robotic arm to respond to a limited set of commands.

The Problem 

The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n-1) with block b i adjacent to block b i+1 for all $0 \leq i < n-1$ as shown in the diagram below:
 
\begin{figure}\centering\setlength{\unitlength}{0.0125in} %\begin{picture}(2......raisebox{0pt}[0pt][0pt]{$\bullet\bullet \bullet$ }}}\end{picture}\end{figure}
Figure: Initial Blocks World

The valid commands for the robot arm that manipulates blocks are:

  • move a onto b

    where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.

  • move a over b

    where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.

  • pile a onto b

    where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.

  • pile a over b

    where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.

  • quit

    terminates manipulations in the block world.

Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks.

The Input 

The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25.

The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.

You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.

The Output 

The output should consist of the final state of the blocks world. Each original block position numbered i ( $0 \leq i < n$ where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don't put any trailing spaces on a line.

There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).

Sample Input 

10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit

Sample Output 

 0: 0
 1: 1 9 2 4
 2:
 3: 3
 4:
 5: 5 8 7 6
 6:
 7:
 8:
 9:

题意

 
 
  • move a onto b
    • a和b都是积木的编号,先将a和b上面所有的积木都放回原处,再将a放在b上。
  • move a over b
    • a和b都是积木的编号,先将a上面所有的积木放回原处,再将a放在b上。(b上原有积木不动)
  • pile a onto b
    • a和b都是积木的编号,将a和其上面所有的积木组成的一摞整体移动到b上。在移动前要先将b上面所有的积
    • 木都放回原处。移动的一摞积木要保持原来的顺序不变。
  • pile a over b
    • a和b都是积木的编号,将a和其上面所有的积木组成的一摞整体移动到b所在一摞积木的最上面一个积木上。
    • 移动的一摞积木要保持原来的顺序不变。
      •  当a = b或a和b处在同一摞时,任何企图操作a和b的命令都是非法的。所有非法
      • 的命令都要忽略,且不能对当前积木的状态产生作用。
    •  

#include <iostream>
#include <cstdlib>
#include <cstdio> 

using namespace std;

int place[25];
int stack[25][25];
int top[25];

//将a上面的放回原位 
void init_place( int a )
{
	int block,id = place[a];
	while ( stack[id][top[id]] != a ) {
		block = stack[id][top[id] --];
		place[block] = block;
		stack[block][++ top[block]] = block;
	}
}

//将a和上面的全都移动到b上
int  temp[25];
void pile_a_to_b( int a, int b )
{
	int topt = -1,id = place[a],ID = place[b];
	//先将a上面的逆序存入temp 
	while ( stack[id][top[id]] != a )
		temp[++ topt] = stack[id][top[id] --];
	//再存入a
	place[a] = ID;
	stack[ID][++ top[ID]] = a;
	top[id] --;
	//最后将temp里面的逆序存入b 
	while ( topt >= 0 ) {
		place[temp[topt]] = ID;
		stack[ID][++ top[ID]] = temp[topt --];
	}
}
 
int main()
{
	int  n,a,b;
	char oper[5],type[5];
	while ( ~scanf("%d",&n) ) {
		for ( int i = 0 ; i < n ; ++ i ) {
			stack[i][0] = i;
			place[i] = i;
			top[i] = 0;
		}
		while ( scanf("%s",oper) && oper[0] != 'q' ) {
			scanf("%d%s%d",&a,type,&b);
			
			//如果ab在同一堆,不处理 
			if ( place[a] == place[b] )
				continue;
			
			//如果是move先把a上面的还原 
			if ( oper[0] == 'm' )
				init_place( a ); 
			
			//如果是onto先把b上面的还原 
			if ( type[1] == 'n' )
				init_place( b );
			
			//把A堆放在B堆上	
			pile_a_to_b( a, b ); 
		} 
		
		for ( int i = 0 ; i < n ; ++ i ) {
			printf("%d:",i);
			int now = 0;
			while ( now <= top[i] )
				printf(" %d",stack[i][now ++]);
			printf("\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值