兴起及现状
核心需求
先说一下这个核心需求为什么会出现。大家在看移动直播的时候,如果有人关注的话,会发现那些主播经常问的一句话就是“卡不卡,是不是又卡了,我要疯了,又卡住了”。你们看点播的时候,看短视频的时候,不会有人这么问吧?不会说你们看短视频,它又卡了,这种问题是最近才出现的。真正的客户都已经返回这种问题了,说明流媒体的门槛又变高了,所以他们对流媒体的需求是在增长的。那我们就看一下这些需求都有哪些。
1、首先内容产生方就是推流端,现在主流的IOS、安卓,IOS比较简单,就是那个几个机型,基本大家适配都很好。但是安卓的碎片化是非常严重的,大量的精力都需要做对安卓的适配,而且软编耗电量普遍非常高,手机用了一会就会发烫,都担心会不会爆炸。用户体验就是在不同的网络情况下,上传的视频有可能会卡,有可能不连贯,报各种各样的错误,这个是作为一个开发者他自己不可能去适配的。说白了从用户那边提的需求就是推流端不能卡,画质要好,不能太烫,这是我们接触到的客户真正提的问题,是我们从有点偏技术的角度抽取出来的,它背后对应的是哪些事情。
2、然后是分发网络。分发网络其实躲在一个很后面的地方,用户其实看不见的。真正对分发网络提需求用户也提不出来,所以基本这部分需求都会提给播放端,提的需求也是不能卡,不能花屏,首屏一定要快,一点就要看到,还不能把延时弄的太大。其实这些很多都是和源站分发网络有关系的,只是用户看不到这个需求会跟后面的播放器接在一起。
对这个需求我们做一些抽象来说就是用户的可触达性要好,我们的CDN节点要在全区域、全运营商有覆盖,包括教育网。有很多人,像那些小运营商都会忽视教育网,我们也遇到过这样的例子,教育网确实不好接,因为节点不够多,这其实不是什么难点,只是一个坑,注意到了就能做到。低延时的操作大部分来自端的配合,服务端只要是做好缓存,保证这个数据是连贯的。如果要丢数据的话,把关键帧保留好,丢GOP中间那些PB帧,主要是在端上会收到。
首屏时间,就是用户点开就要看,以前那些开源架构就是rtmp server,它是做不到一点开就能看的,现在一些开源的国内资源写得也比较好了,可以看到。我们是自己开发的,所以也花了一些工作,能保存之前的关键帧的信息,用户一点开就能看,这个就是很细节的东西了。如果这个做不好的话,会黑屏、绿屏,或者是半天看不着图像。
3、在播放器这边也是我们在接业务的时候,遇到用户投诉最多的,因为所有的问题都是在观看的时候体现的,所有的雷都得是播放器的同学去扛。这个需求也是不能卡,不能延迟太高。如果延迟高了,要追回来,追的时候声音不能变,最好是追的策略也能自己控制,这是用户真正提出来的需求。
对于我们来说,要满足这些需求,我们需要做好多分辨率的适配,保证好流畅性,保证好我们追赶的策略不会出现任何异常。所以这三个端很多是相互耦合的,像推流和分发在一起,要保障好用户的流畅性和画质,分发和播放器在一起要保证好低延时和播放的流畅。所有的这些需求里共同的一点就是不能卡,后面我们在设计方案的时候,也是重点考虑怎么能做到不卡。
解决方案
这个是我们这边的系统架构图。最下层是依托金山的云服务,因为我们已经有了很好的平台,提供了我们计算资源,提供了存储,提供了很多自建的节点,当然还不够多,我们还是个融合CDN,然后提供了数据分析的能力。我们依托它做了橙色的这一层,就是我们自己的核心,流媒体直播,然后围绕这个核心我们再做的回看点播、在线转码、鉴权、内容审核。
为什么要做回看点播?因为这不是一个短视频录播的项目,而是一个直播,直播就决定它的并发不会很高,内容不会很多,热点比较少。如果你不回看的话,用户很难维持它的日活,很难维护用户黏度,所以用户一定会要求做回看的。
为什么要做在线转码?推流端其实做了很多把更好的画质想尽办法传上来的工作,投了很多人力来做。传上来之后,观看也在移动端,它不一定看得了。如果他看不了怎么办?我们就需要在线转,在线转码其实承担的更多更重要的事情。
鉴权,用户都不想被盗链,尤其是推流的时候,如果我不鉴权,谁都可以来推,推个法lun功怎么办?这是必须要有的。内容审核,现在我们没有办法帮他做到自动审核,技术还不够。现在做到的是截图,按用户指定的时间定期截图,这样的话,用户就可以请一些外包来看是不是有敏感内容,是不是要下线,这个对于现在这种三四秒延迟的直播来说非常重要。你做不到的话,没准政策因素你就做不下去了。
数据分析一部分是依托金山已有的,一部分是我们自己做的,因为我们延迟性,时效性要求更高。客户会经常大半夜突然提出一个主播看起来特别卡,问你为什么,要是像以前那种方式,一个小时生成报表,然后出体验图,告诉他为什么卡了,客户可没有这个耐心。
我们现在基本能做到5秒间隔就出之前的各种问题定位,这个定位包括从源站收集的数据画的曲线。还有从端上,如果端上用户允许的话,推流和拉流端我们都会有上报数据,几个曲线一拟合,我们就知道问题出在哪里。所以现在不止是RD可以来查这个问题,我们很多售前都在承担着帮用户出这个图的工作。
这个是介绍业务具体的流程图,这个流程图并没有什么特别,只是一般的流媒体的数据走向、各种请求。但是其中有一些坑我可以跟大家重点说一下,首先看一下直播发起流程,这肯定是由应用向自己的服务端去请求一个推流地址,这个推流地址他就用来向我们的流媒体服务器推,然后我们给它鉴权。
鉴权之后,它可以在参数里选择是不是要录像。如果需要录像截图,或者需要HLS的分发,我们都可以帮他做,做完之后存到我们的存储里,这也是后面会提到的,我们各个业务之间在做隔离、分不同的优先级,这种后端的多媒体的处理尽量都会依赖别的服务,然后就是正常的结束流程。
这个是实际中遇到的一个问题,现在做流媒体,用户推流,他想知道这个流结没结束,一般互联网公司做云服务都怎么做?都是给回调,如果这个推流结束了,我来回调业务方,让业务方知道我结束了,你可以做你的逻辑了。
但实际操作中我们遇到了问题,就是业务方的服务器没那么可靠,我们可能过去时间特别久,有延时,有丢,或者他们的服务稳定性我们也确认不了,这其实就是一个双方的耦合了。而且它的服务器,由于是我们来调,它的鉴权功能没有办法做得很复杂,他自己的服务器也存在安全漏洞。如果有人来攻击他的话,他的整个业务流程的状态全是乱的。
在试了几家客户之后,我们就改成另外一种方式,也是大家普遍都接受的,就是由APP和自己的Server发心跳,如果APP的网络不异常的话,它自己结束它的Server肯定是知道的。如果异常的话心跳断了,他也会判断出是结束了的。而且我们这边源站服务也会保证,你5秒钟没有数据就一定是结束的了,我们会把你的流给踢掉,这样就能达到用户的业务状态也是稳定的,我们的流媒体服务也是稳定的,而且耦合也会比较少。
这是我们实际遇到的一个坑,这个其实不难,只是看现在普遍云服务提供商还都是在用回掉的方式,所以我特别提一下另外还有一种可选的方式,效果更好。
播放的流程,播放器会先向他自己的服务请求播放地址,然后来我们这拉流,可以是鉴权也可以不鉴权,取决于它的业务形态。如果拉流失败,我们有一些定制化的操作,他用RTMP来拉流的话,我们会告诉他具体是什么错,包括鉴权失效,鉴权参数错误,还是这个流有问题,我们都会在状态告诉他的。这是之前用户提到的需求,说是播放需要知道哪里出了问题,所以我们尽量把状态码都特别详细的返回给用户。包括我们原站也有查询接口,如果他需要那种统一查询也可以来查。
1. 推流端实现方案
我们做了一个多源站,相对于很多公司在做单源站的方式,我们就是为了让用户能更好的触达我们的网络。在各个集群、各个城市做了多源站,现在不光是国内有几个点,在香港和美国我们也各做了一个点。这样怎么能做到横向的扩容和数据与业务中心的隔离,是花了一些心思的。这种方案并不是很难,用一些存储做好同步其实也做到了。
高可用,就像DNS这种,保证服务单点的,高可用都能做到。怎么做到系统解耦,因为传统的CDN只是负责流媒体的分发,我们相对于它的优势就是我们除了做流媒体分发以外,还做了很多多媒体的功能,像截图、录像、转码、多分辨率适配这些东西,这些东西是会影响系统稳定性的。怎么能在这里做到真正的解耦,保证系统稳定是下了很多工夫的。
一些开源服务,也做多分辨率适配,但是它所有的转码调度都是由它的流媒体服务来调起的。包括转码的生命周期也是流媒体服务来控制的,他们都在同级部署。其实这是有很大问题的,多分辨率适配和原画的推送和分发完全不是一个优先级的服务。做系统定级的时候就应该把它们分离开,应该分离在不同的系统来做。
部存储的目的也是为了能够更好的保证用户截图和录像的文件的可靠性,存下来之后我们就不管了,交给KS3,当然KS3多媒体服务也是我们维护的。做转码截图,或者是转分辨率合并一系列操作,是由另外一套系统来做,我们把这些多媒体的服务和源站的服务做了解耦。
在线转码是一个非常耗CPU的业务。一台现在很高端配置的24核机器,如果我想转一些画质比较好的视频,每个视频转三个分辨率,这样我转八路就把它打满了,这是很耗CPU的。如果我转了没人看,这个CPU就在那耗着,而且这个是不适合和源站混部的一个服务。
转码要和数据离的近,在那个源站集群的同一机房,我们会申请一些转码的资源,然后由核心机房来统一调度。我们把调度和具体的功能分离开,根据你这个流推到哪,我们就就近在哪里转码。转码也加了一些实时转码的策略。
为什么要做在线转码?因为推流端已经是尽最大努力把最好的画质、最高的带宽传上来。但是播放端不一定看得了,这样我们就需要把它转出来,而且h.265虽然好,但是有个最大的问题就是在移动端的浏览器上没有办法播。分享出来的必须是h.264,要不然去微信或者是QQ浏览器,你是看不了的。
就是如果我用了很高深的技术手段,把你的h.265的视频推上来了,画质很好。但不在我们端上就看不了,你要想分享的话,我们可以帮你转出一份h.264的来分享。转码是一个高CPU占用的场景,如果我不对CPU做合理的分配的话,很快我的机器资源就会被打满。
我们做了两种策略,一种是有限的机器合理调度。我们的转码系统是个分布式,流水线式的,类似Storm那种系统,但是我们自己做得更适合转码。任务进来之后,我们第一个流程不是转,而是分析,看看你是要转成什么样,你是什么画质,大概会用什么CPU。
如果你的CPU占用很多,我会认为这是一个很难再次被调度的服务,比如你一下进来一个占四个核的转码服务,后来再来一堆占一个核的,肯定是一个核的比较好调度,这个机器资源紧张了,我可以给你调度另外一台机器,或者另外一台机器本来就有些空余,现在剩三个核,我接不了四个核的,我只能先接一个核的,所以我们会按优先级,优先分配高CPU占用的任务,然后才是低CPU占用的任务,在流式系统里,会在预分析之后把不同的任务扔进不同的优先级队列,这个优先级队列就承担着去转不同分辨率视频的职能。
而且在后头如果需要降级容灾的话,也是靠这个优先级队列来解决的,每个用户会有配额。我刚才说24和准24路,其实对于一个云服务公司来说这个量太小了。像我之前在百度做媒体云的时候,每天转码量是有30万,我觉得一个业务做大了,一天30万的转码量是很正常的。
这是考验并发的一个项目,怎么能做到尽量的把CPU打平,因为波峰波谷很明显。像h.265这个场景,我们是做了一套实时转码,有人分享就立刻给你转,让用户一旦开始分享的时候,能达到秒开的作用。但是你不看的时候,我们会有策略尽快帮你停下来。因为这种分享出去的视频并不是一个高并发的业务,有人看我们才给他转是个比较合理的场景。
对于那些低分辨率的现在也在逐步上灰度,不是说所有的你分发了,你发起了,我都给你转,我们会逐渐判断,有人看我们才转,尽量节省系统资源。后面也会考虑存储资源,因为每个机房都会有存储,存储是完全不用CPU的,它保证的是磁盘和IO,和我们完全是资源不复用的,是可以混部的,后面我们会考虑一步一步的混部。
CDN的分发环节,分发环节其实有很多东西是需要播放来配合的,比如说现在推流为了保证画质好,我会增加B帧,加大GOP,这样编码出来的视频质量会变好,代价就是我增加了GOP,那我的延迟就会大,用户一定是从上一个关键帧开始看,这样他看到的可能就是5秒甚至是10秒之前的视频,这个对社交类的移动直播是不可忍受的。既然有这种需求,源站就需要把之前的都保存好。但是怎么能让延时被消化掉,就要靠播放端。
这个丢弃有多种策略,有的是直接丢掉帧,有的是快进。如果做过播放器就会知道,传统的视频追赶一般都是在视频解码之后来做追赶。解码就意味着会耗CPU,尤其是现在如果我想播720的视频,光是解码就基本上勉强实时的话,根本就没有什么追赶的余地了。
所以我们在算法上做了一些优化,我们拿到这个视频的时候会先去判断它是不是一个可以丢的,如果它是可以丢的,在解码之前我们就丢,但是这样丢会出问题,因为解码器会内部不连续,一旦解码器内部不连续了,它可能会产生黑屏,所以我们即使要丢,也是在解码器里边做了一些定制化的开发,还是把要丢的视频传进去,让它自己来丢,它不去解,这样就能达到更快速的把这个视频丢掉,赶上现在的实际主播的进度。
这样的话,如果我们网络状况很好,不担心以后抖动的话,我们能做到从推流到观看是2秒的延迟,但是一般我们都控制在4秒,就是为了防止抖动产生。
刚才说的是丢的这种逻辑,如果想快进,类似斗鱼那种,在一点进去之后,开始画面是很快过去的,但是没有音频,我们现在在做有音频的方式,视频在快进,音频也在快进,这样的话声音会变调,因为采样率变了。以前在做端的经验的时候,也做过这种变速不变调的算法,很多开源的,改改其实效果都能不错,这种算法只要做好逆向优化,放进来之后,音频也能保证不变调。
日志收集,可能日志收集不是所有的开发者都愿意接受的,但是有的开发者是逼着我们要我们做,因为他们需要这个数据来定位问题,就像我刚才说的,经常有人会问,是不是又卡了,这个问题被问多了之后,大家都希望知道为什么卡,端上的日志不收集上来是没有办法定位出这个问题的。我们现在有日志收集的策略在用户同意的情况下,会定期可能几百条打成一个ZIP包发上来,这个数据是我们和用户共享的。
播放器其实我们也趟过坑,最开始我们基于VLC做,因为最开始我们做媒体云是做点播的业务,VLC是个挺好的架构,但是用VLC做追赶这个逻辑就能把人坑死,特别难改。因为它里头一层一层耦合的很重,即使到最后改完了,声音也有卡的情况。后来还是用更简单的框架,自己来写上层的所有控制。所以在移动端的直播场景和点播场景还是有很大区别的,这也就是为什么最近突然又出现了很多在视频语音业务上的门槛。
这页我刚才已经陆陆续续都提到了,就是我们如何来定位问题,如何满足播放器的兼容,还有追赶的各种体验,发包的时候,我们会注意APP的大小。因为我们是一个采集和播放都是由我们提供的端到端的方案,有很多库是可以复用的,如果都用我们的话,我们可以把其中一些库做合并,最大程度节省我们提供的压缩包的大小。
用户案例
这个是我们实际接的一些用户的案例,其中有的主推的硬编,有的主推的软编,很多是产品上的一些细节了。我们也在通过这些案例,分析到底哪些产品适合做社交类的直播,已经看到了有一些有用户基础和关注关系的开始有火起来的希望了,而且也是他的需求提的最多,也是最有意愿上h.265的。一旦你有了这种关系,真的过了试水试错这个阶段的话,就会非常关注你产生的内容的画质,由于我们这是端到端的服务,所以非常适合接入这种用户。