很简单的dp,一开始看错题了以为[l,r] 区间内每个可以增加好几个,晚上室友麻麻请吃饭- -所以现在才A掉- -
设dp[x]为到位置x使每个都填满且[l,r] 左右区间都不重复的方案数
设a[x]为位置x需要填补的数量
若a[x - 1] - a[x] > 1 那么补满了a[x - 1]后有大于1个区间要结尾,即以x - 1结尾的区间数大于1,不符合题意,因此 dp[x] = 0
若a[x - 1] - a[x] == 1 那么补满a[x - 1]的所有a[x - 1]个区间里有a[x]个延伸到x的位置 因此 dp[x]=dp[x-1]*C(a[x - 1], a[x])
若a[x - 1] - a[x] == 0 那么补满a[x - 1]的所有a[x - 1]个区间都延伸到x的位置(dp[x - 1]) 或选择a[x]个延伸到x的位置,再增加一个以x开头的区间(dp[x - 1] * C(a[x - 1], a[x]))
因此 dp[x]= dp[x - 1] + dp[x - 1] * C(a[x - 1], a[x])
若a[x - 1] - a[x] == -1 那么补满a[x - 1]的所有a[x - 1]个区间都延伸到x的位置,再增加一个以x开头的区间 因此dp[x] = dp[x - 1]
若a[x - 1] - a[x] < -1 那么补满a[x - 1]的所有区间不足以填补a[x]个位置,需要增加以x开头的区间大于1,不符合题意 因此dp[x] = 0
#pragma warning(disable:4996)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
const int maxn = 2005;
int n, h, a[maxn];
LL C[maxn][maxn],dp[maxn];
int main() {
C[0][0] = 1;
for (int i = 1;i < maxn;i++) {
C[i][0] = 1;
for (int j = 1;j <= i;j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
cin >> n >> h;
for (int i = 1;i <= n;i++) {
scanf("%d", &a[i]);
a[i] = h - a[i];
}
n++;
dp[0] = 1;
for (int i = 1;i <= n + 1;i++) {
if (a[i - 1] - a[i] == 1) {
dp[i] = (dp[i - 1]*C[a[i-1]][1])%mod;
}
else if (a[i] - a[i - 1] == 1) {
dp[i] = dp[i - 1];
}
else if (a[i] == a[i - 1]) {
dp[i] = (dp[i - 1] + dp[i - 1] * C[a[i - 1]][1])%mod;
}
else {
dp[i] = 0;
}
}
cout << dp[n + 1] << endl;
return 0;
}