Snacks
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 3621 Accepted Submission(s): 839
Problem Description
百度科技园内有
n
个零食机,零食机之间通过
n−1
条路相互连通。每个零食机都有一个值
v
,表示为小度熊提供零食的价值。
由于零食被频繁的消耗和补充,零食机的价值 v 会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。
为小度熊规划一个路线,使得路线上的价值总和最大。
由于零食被频繁的消耗和补充,零食机的价值 v 会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。
为小度熊规划一个路线,使得路线上的价值总和最大。
Input
输入数据第一行是一个整数
T(T≤10)
,表示有
T
组测试数据。
对于每组数据,包含两个整数 n,m(1≤n,m≤100000) ,表示有 n 个零食机, m 次操作。
接下来 n−1 行,每行两个整数 x 和 y(0≤x,y<n) ,表示编号为 x 的零食机与编号为 y 的零食机相连。
接下来一行由 n 个数组成,表示从编号为0到编号为 n−1 的零食机的初始价值 v(|v|<100000) 。
接下来 m 行,有两种操作: 0 x y ,表示编号为 x 的零食机的价值变为 y ; 1 x ,表示询问从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。
本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:
`#pragma comment(linker, "/STACK:1024000000,1024000000") `
对于每组数据,包含两个整数 n,m(1≤n,m≤100000) ,表示有 n 个零食机, m 次操作。
接下来 n−1 行,每行两个整数 x 和 y(0≤x,y<n) ,表示编号为 x 的零食机与编号为 y 的零食机相连。
接下来一行由 n 个数组成,表示从编号为0到编号为 n−1 的零食机的初始价值 v(|v|<100000) 。
接下来 m 行,有两种操作: 0 x y ,表示编号为 x 的零食机的价值变为 y ; 1 x ,表示询问从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。
本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:
`#pragma comment(linker, "/STACK:1024000000,1024000000") `
Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。
对于每次询问,输出从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。
对于每次询问,输出从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。
Sample Input
1 6 5 0 1 1 2 0 3 3 4 5 3 7 -5 100 20 -5 -7 1 1 1 3 0 2 -1 1 1 1 5
Sample Output
Case #1: 102 27 2 20
Source
把树的每个节点的和用线段树维护。。通过dfs的序来进行查找和修改,因为是对一个节点的和,所以动一个节点下面的值也都改变,所以区间修改。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <string.h>
#include <stdio.h>
using namespace std;
const int maxn = 100030;
const long long INF = 0x3f3f3f3f3f3f3f;
int in[maxn], out[maxn], value[maxn], t[maxn],dfs_clock;
long long dist[maxn];
struct Node {
int u, v, next;
}node[maxn << 1];
int num, head[maxn];
int a[maxn];
void init() {
num = 0;
dfs_clock = 0;
memset(head, -1, sizeof(head));
}
void add(int u, int v) {
node[num] = {u, v, head[u]};
head[u] = num++;
node[num] = {v, u, head[v]};
head[v] = num++;
}
void dfs(int u, int fa) {
in[u] = ++dfs_clock;
t[dfs_clock] = u;
for (int i = head[u]; i != -1; i = node[i].next) {
int v = node[i].v;
if (v != fa) {
dist[v] = dist[u] + a[v];
dfs(v, u);
}
}
out[u] = dfs_clock;
}
long long tree[maxn << 2], lazy[maxn << 2];
void push_up(int node) {
tree[node] = max(tree[node << 1], tree[node << 1 | 1]);
}
void push_down(int node) {
if (lazy[node]) {
tree[node << 1] += lazy[node];
tree[node << 1 | 1] += lazy[node];
lazy[node << 1] += lazy[node];
lazy[node << 1 | 1] += lazy[node];
lazy[node] = 0;
}
}
void build(int node, int left, int right) {
lazy[node] = 0;
if (left == right) {
tree[node] = dist[t[left]];
return;
}
int mid = (left + right) >> 1;
build(node << 1 , left, mid);
build(node << 1 | 1, mid + 1, right);
push_up(node);
}
void update(int node, int left, int right, int begin, int end, int val) {
if (begin <= left && end >= right) {
lazy[node] += val;
tree[node] += val;
return;
}
push_down(node);
int mid = (left + right) >> 1;
if (mid >= begin)
update(node << 1, left, mid, begin, end, val);
if (mid < end)
update(node << 1 | 1, mid + 1, right, begin, end, val);
push_up(node);
}
long long query(int node, int left, int right, int begin, int end) {
if (begin <= left && end >= right) {
return tree[node];
}
push_down(node);
long long ans = -INF;
int mid = (left + right) >> 1;
if (mid >= begin)
ans = max(ans, query(node << 1, left, mid, begin, end));
if (mid < end)
ans = max(ans, query(node << 1 | 1, mid + 1, right, begin, end));
return ans;
}
int main() {
//freopen("in.txt", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
for (int i = 1; i<= t; ++i) {
init();
cout << "Case #" << i << ":\n";
int n, m;
cin >> n >> m;
for (int j = 1; j < n; ++j) {
int u, v;
cin >> u >> v;
add(u, v);
}
for (int j = 0; j < n; ++j) {
cin >> a[j];
}
dist[0] = a[0];
dfs(0, -1);
build(1, 1, n);
for (int j = 0; j < m; ++j) {
int state;
cin >> state;
if (state == 1) {
int q;
cin >> q;
cout << query(1, 1, n, in[q], out[q]) << endl;
} else {
int num, val;
cin >> num >> val;
update(1, 1, n, in[num], out[num], val - a[num]);
a[num] = val;
}
}
}
}