HDU5692 Snacks (dfs序 + 线段树)

Snacks

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3621    Accepted Submission(s): 839


Problem Description
百度科技园内有 n 个零食机,零食机之间通过 n1 条路相互连通。每个零食机都有一个值 v ,表示为小度熊提供零食的价值。

由于零食被频繁的消耗和补充,零食机的价值 v 会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。

为小度熊规划一个路线,使得路线上的价值总和最大。
 

Input
输入数据第一行是一个整数 T(T10) ,表示有 T 组测试数据。

对于每组数据,包含两个整数 n,m(1n,m100000) ,表示有 n 个零食机, m 次操作。

接下来 n1 行,每行两个整数 x y(0x,y<n) ,表示编号为 x 的零食机与编号为 y 的零食机相连。

接下来一行由 n 个数组成,表示从编号为0到编号为 n1 的零食机的初始价值 v(|v|<100000)

接下来 m 行,有两种操作: 0 x y ,表示编号为 x 的零食机的价值变为 y 1 x ,表示询问从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。

本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:

`#pragma comment(linker, "/STACK:1024000000,1024000000") `
 

Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。

对于每次询问,输出从编号为0的零食机出发,必须经过编号为 x 零食机的路线中,价值总和的最大值。
 

Sample Input
  
  
1 6 5 0 1 1 2 0 3 3 4 5 3 7 -5 100 20 -5 -7 1 1 1 3 0 2 -1 1 1 1 5
 

Sample Output
  
  
Case #1: 102 27 2 20
 

Source

把树的每个节点的和用线段树维护。。通过dfs的序来进行查找和修改,因为是对一个节点的和,所以动一个节点下面的值也都改变,所以区间修改。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <string.h>
#include <stdio.h>
using namespace std;
const int maxn = 100030;
const long long INF = 0x3f3f3f3f3f3f3f;
int in[maxn], out[maxn], value[maxn], t[maxn],dfs_clock;
long long dist[maxn];
struct Node {
    int u, v, next;
}node[maxn << 1];
int num, head[maxn];
int a[maxn];
void init() {
    num = 0;
    dfs_clock = 0;
    memset(head, -1, sizeof(head));
}

void add(int u, int v) {
    node[num] = {u, v, head[u]};
    head[u] = num++;
    node[num] = {v, u, head[v]};
    head[v] = num++;
}


void dfs(int u, int fa) {
    
    in[u] = ++dfs_clock;
    t[dfs_clock] = u;
    for (int i = head[u]; i != -1; i = node[i].next) {
        int v = node[i].v;
        if (v != fa) {
            dist[v] = dist[u] + a[v];
            dfs(v, u);
        }
    }
    out[u] = dfs_clock;
}

long long tree[maxn << 2], lazy[maxn << 2];

void push_up(int node) {
    tree[node] = max(tree[node << 1], tree[node << 1 | 1]);
}

void push_down(int node) {
    if (lazy[node]) {
        tree[node << 1] += lazy[node];
        tree[node << 1 | 1] += lazy[node];
        lazy[node << 1] += lazy[node];
        lazy[node << 1 | 1] += lazy[node];
        lazy[node] = 0;
    }
}

void build(int node, int left, int right) {
    lazy[node] = 0;
    if (left == right) {
        tree[node] = dist[t[left]];
        return;
    }
    int mid = (left + right) >> 1;
    build(node << 1 , left, mid);
    build(node << 1 | 1, mid + 1, right);
    push_up(node);
}

void update(int node, int left, int right, int begin, int end, int val) {
    if (begin <= left && end >= right) {
        lazy[node] += val;
        tree[node] += val;
        return;
    }
    push_down(node);
    int mid = (left + right) >> 1;
    if (mid >= begin)
        update(node << 1, left, mid, begin, end, val);
    if (mid < end)
        update(node << 1 | 1, mid + 1, right, begin, end, val);
    push_up(node);
}

long long query(int node, int left, int right, int begin, int end) {
    if (begin <= left && end >= right) {
        return tree[node];
    }
    push_down(node);
    long long ans = -INF;
    int mid = (left + right) >> 1;
    
    if (mid >= begin)
        ans = max(ans, query(node << 1, left, mid, begin, end));
    if (mid < end)
        ans = max(ans, query(node << 1 | 1, mid + 1, right, begin, end));
    return ans;
}

int main() {
        //freopen("in.txt", "r", stdin);
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t;
    cin >> t;
    for (int i = 1; i<= t; ++i) {
        init();
        cout << "Case #" << i << ":\n";
        int n, m;
        cin >> n >> m;
        for (int j = 1; j < n; ++j) {
            int u, v;
            cin >> u >> v;
            add(u, v);
        }
        
        for (int j = 0; j < n; ++j) {
            cin >> a[j];
        }
        dist[0] = a[0];
        dfs(0, -1);
        build(1, 1, n);
        for (int j = 0; j < m; ++j) {
            int state;
            cin >> state;
            if (state == 1) {
                int q;
                cin >> q;
                cout << query(1, 1, n, in[q], out[q]) << endl;
            } else {
                int num, val;
                cin >> num >> val;
                update(1, 1, n, in[num], out[num], val - a[num]);
                a[num] = val;
            }
        }
    }
    
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值