2021.3.16实参高阶函数和装饰器

实参高阶函数和装饰器总结:

01函数就是变量

  1. 函数的本质

    python中定义函数其实就是在定义一个类型是function的变量, 函数名就是变量名

    变量能做的函数都可以做

    a = 10
    b = 'abc'
    c = [1, 29, 8]
    d = {'a': 23, 'b': 100}
    e = lambda x: x*2       # e 是变量
    """
    def e(x):
        return x*2
    """
    def func1():        # func1 是变量
        print('函数')
    
    print(type(d), type(e), type(func1))
    
  2. 变量的常用操作

    # 1)
    a = 10
    x1 = a
    print(x1, x1 + 10)
    x2 = func1
    x2()
    
    # 2)
    list1 = [a, 100]
    print(list1, list1[0] * 10)
    list1 = [func1, 100]
    print(list1, list1[0]())
    
    # 3)
    a = 100
    print(a)
    
    func1 = 100
    print(func1)
    
    # 4)
    def func2(x):
        print(x)
    
    def func1():        # func1 是变量
        print('函数')
    a = 10
    func2(a)
    func2(func1)
    
    # 5)
    def func3():
        aa = 10
        return aa
    def func4():
        def fn():
            print('小函数')
        return fn
    func4()()     # fn()
    def test(x):
        x(10)
    test(func2)
    
  3. 高阶函数

    • 实参高阶函数 - 如果一个函数的参数是函数,那么这个函数就是实参高阶函数 (掌握怎么使用系统提供的实参高阶函数)

    • 返回值高阶函数 - 如果一个函数的返回值是函数,那么这个函数就是返回值高阶函数(会写装饰器)

02实参高阶函数

  1. 常用实参高阶函数:max、min、sorted、map、reduce

  2. max 和 min 、sorted

    • max(序列, key=函数)
    • sorted(序列, key=函数)
    • 列表.sort(key=函数)
    • 函数的要求:
      a. 有且只有一个参数,这个参数指向的数前面序列中的每个元素
      b. 需要一个返回值,返回值决定求最大值的时候比较的对象
    nums = [29, 87, 65, 9, 25]
    print(max(nums))
    
    # 求列表nums中个位数最大的元素: 19
    nums = [28, 87, 65, 19, 25]
    result = max(nums, key=lambda item: item % 10)
    print(result)   # 19
    
    
    # 求列表nums中十位数最大的元素:
    nums = [28, 607, 65, 19, 85]
    result = max(nums, key=lambda item: item // 10 % 10)
    print(result)       # 85
    
    nums = [28, 607, -650, 19, -85]
    # result = max(nums, key=lambda item: item**2)
    result = max(nums, key=lambda item: item if item > 0 else -item)
    print(result)   # -650
    
    # 练习:求列表中各个位上和最大的元素
    # 10, 13, 11, 10, 16
    nums = [28, 607, 65, 19, 88]
    
    # 方法一:
    # def sum1(item):
    #     s = 0
    #     for x in str(item):
    #         s += int(x)
    #     return s
    # result = max(nums, key=sum1)
    
    # 方法二
    result = max(nums, key=lambda item: sum([int(x) for x in str(item)]))
    print(result)
    
    
    # 练习:用min获取students中年龄最小的学生
    students = [
        {'name': '小明', 'age': 18, 'score': 98, 'tel': '187283822'},
        {'name': '小红', 'age': 30, 'score': 99, 'tel': '187283827'},
        {'name': 'Tom', 'age': 25, 'score': 87, 'tel': '187283821'},
        {'name': 'Bob', 'age': 19, 'score': 65, 'tel': '187283820'}
    ]
    result = min(students, key=lambda stu: stu['age'])
    print(result)
    
    result = max(students, key=lambda stu: stu['score'])
    print(result)
    
    # 将列表中的元素按照个位数的大小从小到大排序
    nums = [28, 87, 65, 19, 25]
    result = sorted(nums, key=lambda item: item % 10)
    print(result)   # [65, 25, 87, 28, 19]
    
    students.sort(key=lambda stu: stu['tel'][-1])
    print(students)
    
    # 求nums数字数值最大的元素
    nums = [23, '38', '2893', 89]
    result = max(nums, key=lambda item: int(item))
    print(result)
    
    • 3.1 map(函数, 序列)

      函数的要求:
      a.有且只有一个参数,这个参数指向的是后面这个序列每个元素
      b.需要一个返回值,描述新序列中的元素和原序列中元素的关系

    • 3.2 map(函数, 序列1, 序列2)
      函数的要求:
      a. 有且只有两个参数,这两个参数分别指向后面的两个序列中的元素
      b. 需要一个返回值,描述新序列中的元素和原序列中元素的关系
      map(函数, 序列1, 序列2, 序列3)

    # 1) [28, 89, 34, 78, 21]  -> [8, 9, 4, 8, 1]
    nums = [28, 89, 34, 78, 21]
    result = map(lambda item: item % 10, nums)
    print(list(result))    # [8, 9, 4, 8, 1]
    
    # 2)
    nums1 = [10, 20, 30, 40]
    nums2 = [100, 200, 300, 400]
    # [110, 220, 330, 440]
    result = map(lambda item1, item2: item1 + item2, nums1, nums2)
    print(list(result))   # [110, 220, 330, 440]
    
    
    scores = [29, 89, 67, 56, 34, 90]
    ages = [23, 30, 19, 24, 25, 23]
    # [{'score': 29, 'age': 23}, {'score': 89, 'age': 30}, ...]
    result = map(lambda item1, item2: {'score': item1, 'age': item2}, scores, ages)
    print(list(result))
    
    values = ['小明', 18, 90]
    keys = ['name', 'age', 'score']
    # {'name': '小明', 'age': 18, 'score': 90}
    result = map(lambda item1, item2: (item1, item2), keys, values)
    print(dict(result))   # {'name': '小明', 'age': 18, 'score': 90}
    

03实参高阶函数reduce

from functools import reduce

reduce函数 - 将序列中所有的元素通过指定的方式合并成一个数据

reduce(函数, 序列, 初始值)
函数的要求:
a. 有且只有两个参数:第一个第一次指向初始值,从第二次开始指向上一次的计算结果;第二个参数指向序列中的每个元素
b. 需要一个返回值,返回值用来描述合并规则

nums = [20, 34, 45, 10]
result = reduce(lambda x, item: x+item, nums, 0)
print(result)

# 循环4次:
# 第1次
# x = 0, item = 20,  x = x + item = 0 + 20 = 20
# 
# 第2次
# x = 20, item = 34, x = x + item = 20 + 34 = 54
# 
# 第3次
# x = 54, item = 45, x = x + item = 54 + 45 = 99
# 
# 第4次
# x = 99, item = 10, x = x + item = 99 + 10 = 109
# 
# return x
nums = [2, 4, 5, 6, 3]  ->  # 2*4*5*6*3
result = reduce(lambda x, item: x * item, nums, 1)
print(result)

nums = [2, 4, 5, 6, 3]  ->   # '24563'
result = reduce(lambda x, item: x + str(item), nums, '')
print(result)

nums = [2, 4, 5, 6, 3]  ->   # '2040506030'
result = reduce(lambda x, item: f'{x}{item}0', nums, '')
print(result)

nums = [23, '45', 10, 2, '30'] ->  # 23+45+10+2+30
result = reduce(lambda x, item: x + int(item), nums, 0)
print(result)

nums = [23, '45', 10, 2, '30']  ->  # 23+10+2
result = reduce(lambda x, item: x + (item if type(item) == int else 0), nums, 0)
print(result)


students = [
    {'name': '小明', 'age': 18, 'score': 98, 'tel': '187283822'},
    {'name': '小红', 'age': 30, 'score': 99, 'tel': '187283827'},
    {'name': 'Tom', 'age': 25, 'score': 87, 'tel': '187283821'},
    {'name': 'Bob', 'age': 19, 'score': 65, 'tel': '187283820'}
]
result = reduce(lambda x, item: x + item['score'], students, 0) / len(students)
print(result)

04装饰器

from time import time
from functools import reduce
  1. 什么是装饰器

    装饰器 = 实参高阶函数 + 返回值高阶函数 + 糖语法

    装饰器是用来给函数添加功能的

  2. 给函数添加功能

    方法一: 在需要添加功能的函数中添加代码

    问题:如果要给不同的函数添加相同的功能,添加的功能的对应的代码需要重复写

    def func1():
        start = time()    # time()  - 获取当前时间
        print('hello world!')
        end = time()
        print('执行时间:', end - start)
    
    
    def func2(N: int):
        start = time()
        result = reduce(lambda x, item: x * item, range(1, N+1), 1)
        print(result)
        end = time()
        print('执行时间:', end - start)
    
    
    func2(8)
    
    方法二:将需要添加的功能封装成函数

    调用函数的时候需要调用的时候新增功能,而不是添加过功能的原函数 - 感觉

    def count_time(fn, *args, **kwargs):
        # fn = func22
        start = time()
        fn(*args, **kwargs)    # 执行函数   func22()
        end = time()
        print('执行时间:', end - start)
    
    
    def func11():
        print('hello world!')
    
    
    def func22(N: int):
        result = reduce(lambda x, item: x * item, range(1, N + 1), 1)
        print(result)
    
    
    def func33(a, b, c):
        print(f'a:{a}, b:{b}, c:{c}')
    
    
    count_time(func11)
    
    count_time(func22, 4)
    
    # func33(10, 20, 30)
    count_time(func33, 10, 20, c=30)
    

    补充*的用法: 打包、解包

    def f1(*nums):
        print(nums)
    
    
    f1(2, 3, 4)    # nums = (2, 3, 4)
    
    x, *y = 10, 20, 30, 40
    
    t = (1, 11, 22)
    print(t)    # (1, 11, 22)
    
    
    print(*t)   # print(1, 11, 22)  -> 1 11 22
    
    d = {'a': 10, 'b': 20}   # **d  -> a=10, b=20
    d2 = {'end': ';', 'sep': ','}
    print('abc', 123, **d2)    # print('abc', 123, end=';', sep=',')
    
    
    def f2(f, *n, **kwargs):
        # f = f3, n = (10, 20, 30)
        f(*n, **kwargs)    # f3(10, 20, 30)  f3(x=10, y=20, z=30)
    
    
    def f3(x, y, z):
        print('函数')
    
    
    f2(f3, x=10, y=20, z=30)
    

05装饰器2

from time import time
from functools import reduce
方法三:装饰器
def 装饰器名称(需要添加功能的函数):
    def 添加过功能的新函数(*args, **kwargs):
        反函数返回值 = 需要添加功能的函数(*args, **kwargs)
        添加新的功能
        return 原函数返回值(如果装饰器本身的功能和原函数返回值有关,这个地方就不一定)
    return 添加过功能的新函数
def count_time(f):
    def new_f(*args, **kwargs):
        start = time()
        result = f(*args, **kwargs)
        end = time()
        print(f'执行时间:{end - start}')
        return result
    return new_f


@count_time
def func1():
    print('hello world!')


func1()


@count_time
def func22(N: int):
    result = reduce(lambda x, item: x * item, range(1, N + 1), 1)
    return result

# func22 = count_time(func22)


print(func22(5))
# 练习1:写一个装饰器,给函数添加功能,然后原函数结束的时候打印一个'end'
def add_end(f):
    def new_f(*args, **kwargs):
        result = f(*args, **kwargs)
        print('end')
        return result
    return new_f


@add_end
def func2():
    print('hello world!')


func2()


# 练习2:写一个装饰器,将函数的返回值加100。 1  -> 101
def value_add(f):
    def new_f(*args, **kwargs):
        result = f(*args, **kwargs)
        if type(result) in (int, float, bool, complex):
            return result + 100
        return result
    return new_f


@value_add
def func33(N: int):
    result = reduce(lambda x, item: x * item, range(1, N + 1), 1)
    return result


print(func33(4))


@value_add
def func2():
    print('hello world!')


print(func2())

高阶函数作业:

  1. 为函数写一个装饰器,在函数执行之后输出 after

    def print_after(f):
        def new_f(*args,**kwargs):
            result = f(*args,**kwargs)
            return result+'after'
        return new_f
    
    @print_after
    def func():
        return ('hello world!')
    
    print(func())
    
  2. 为函数写一个装饰器,把函数的返回值 乘2再返回值

    def value1(f):
        def new_f(*args,**kwargs):
            result = f(*args,**kwargs)
            if type(result) in (int, float, bool, complex, str,tuple, list):
                return result*2
            return result
        return new_f
    
    @value1
    def func():
        return 2
    print(func())
    
  3. 写一个装饰器@tag要求满足如下功能:

@tag
def render(text):
    # 执行其他操作
    return text

@tag
def render2():
    return 'abc'

print(render('Hello'))   # 打印出: <p>Hello</p>
print(render2())     # 打印出: <p>abc</p>
def tag(f):
    def new_f(*args,**kwargs):
        result = f(*args,**kwargs)
        print('<p>',result,'</p>',sep='')
        return result
    return new_f
  1. 求列表 nums 中绝对值最大的元素

    例如:nums = [-23, 100, 89, -56, -234, 123], 最大值是:-234
    
    nums = [-23, 100, 89, -56, -234, 123] # 最大值是:-234
    # 方法一:
    result = max(nums, key=lambda item: item**2)
    print(result)
    # 方法二:
    result = max(nums, key=lambda item: item if item > 0 else -item)
    print(result)
    
  2. 已经两个列表A和B,用map函数创建一个字典,A中的元素是key,B中的元素是value

    A = ['name', 'age', 'sex']
    B = ['张三', 18, '女']
    新字典: {'name': '张三', 'age': 18, 'sex': '女'}
    
    A = ['name', 'age', 'sex']
    B = ['张三', 18, '女']
    result = map(lambda item1,item2:(item1,item2), A, B)
    print(dict(result))
    
  3. 已经三个列表分别表示5个学生的姓名、学科和班号,使用map将这个三个列表拼成一个表示每个学生班级信息的的字典

    names = ['小明', '小花', '小红', '老王']
    nums = ['1906', '1807', '2001', '2004']
    subjects = ['python', 'h5', 'java', 'python']
    结果:{'小明': 'python1906', '小花': 'h51807', '小红': 'java2001', '老王': 'python2004'}
    
    names = ['小明', '小花', '小红', '老王']
    nums = ['1906', '1807', '2001', '2004']
    subjects = ['python', 'h5', 'java', 'python']
    
    result = map(lambda item1, item2, item3:(item1,item2+item3), names, subjects, nums)
    print(dict(result))
    
  4. 已经一个列表message, 使用reduce计算列表中所有数字的和(用采用列表推导式和不采用列表推导式两种方法做)

    message = ['你好', 20, '30', 5, 6.89, 'hello']
    结果:31.89
    
    # 列表推导式:
    list1 = [x for x in message if type(x) in (int,float,bool,complex)]
    print(sum(list1))
    # 非列表推导式:
    result = reduce(lambda x,item: x + (item if type(item) in (int,float,bool,complex) else 0),message,0)
    print(result)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值