1. 迁移学习的两个主要场景
- 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可
- 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练
下面修改预训练好的resnet18网络在私人数据集上进行训练来分类蚂蚁和蜜蜂
2. 数据集下载
这里使用的数据集包含ants和bees训练图片各约120张,验证图片各75张。由于数据样本非常少,如果从0初始化一个网络进行训练很难有令人满意的结果,这时候迁移学习就派上了用场。数据集下载地址,下载后解压到项目目录
3. 导入相关包
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
import torchvision.transforms as transforms
import time
import os
import copy
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
4. 加载数据
PyTorch提供了 torchvision.datasets.ImageFolder 方法来加载私人数据集:
# 训练数据集需要扩充和归一化
# 验证数据集仅需要归一化
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229