week 3(1)——Logistic Regression

分类问题有别于回归问题,假设我们做一个二分类,我们将分类结果表示为y = 0或 y = 1。当我们尝试用回归模型去解决分类问题,我们得到的预测函数很大可能会出现 h θ ( x ) > 1   o r   h θ ( x ) < 0 h_\theta(x)>1 \ or \ h_\theta(x)<0 hθ(x)>1 or hθ(x)<0 这样的情况,显然这是不需要的,并且不太靠谱。
我们应该尝试将 h θ ( x ) h_\theta(x) hθ(x) 控制在(0,1)之间,从而用以解释发生某事的概率,这样更具有可解读性。

假设(预测)函数表示

在回归问题中 h θ ( x ) = θ T x h_\theta(x) = \theta^Tx hθ(x)=θTx
而逻辑回归中 令 h θ ( x ) = g ( θ T x ) , 其 中 g ( x ) = 1 1 + e − x h_\theta(x) = g(\theta^Tx), 其中g(x) = \frac{1}{1+e^{-x}} hθ(x)=g(θTx),g(x)=1+ex1
在这里插入图片描述
从sigmoid函数图像可以看出,其值在(0,1)间,从而 h θ ∈ ( 0 , 1 ) h_\theta \in(0,1) hθ(0,1), 并对 h θ ( x ) h_\theta(x) hθ(x)作如下概率上的解释:
在这里插入图片描述

非线性决策边界

对于线性不可分的情况,我们一般给他加以非线性的特征,从而能够有更加丰富的决策边界划分
在这里插入图片描述

损失函数

逻辑回归的损失函数将不同于先前我们学习的线性回归
在这里插入图片描述
可见,如果继续采用线性回归中的平方和损失函数,会出现很多局部最优解,不利于模型的求解,我们希望能够找到一个相对”convex“的损失函数。
从而我们引入如下的损失函数,并对此损失函数做分析:
在这里插入图片描述
在这里插入图片描述
对于上述这样一个损失函数,可以看出,当y=1时, h θ ( x ) h_\theta(x) hθ(x) 如果预测的值越接近1,那么损失函数就越接近于0;当y=0是, h θ ( x ) h_\theta(x) hθ(x) 如果预测的越接近0,则损失函数越接近0。如此,这样的一个损失函数是”convex“的。
将上述分段函数形式的损失函数简化成一个函数,就成了下面的形式:
在这里插入图片描述

梯度下降

在这里插入图片描述

advanced optimization

在这里插入图片描述
对于高阶的优化方法,不介意自己实现,而是使用已经编写好的函数。
在这里插入图片描述

多分类问题

之前讨论的都是二分类,下面我们讨论多分类问题。
在这里插入图片描述
在这里插入图片描述

上述one-vs-all的主要思想是,每次将一类单拎出来,其他为另一类,这样就化为一个二分类问题,得到一个相应的 h θ ( x ) i h_\theta(x)^i hθ(x)i 函数,最终一共会得到n和预测函数,每一个预测函数代表着预测分类为i的概率。当有一个新的X需要分类时,分别计算出所有的 h θ i h_\theta^i hθi的值,取最大的那个,表示它为第i个分类的可能性最高,从而完成多分类任务。

matlab的实现思路:

在这里插入图片描述
在这里插入图片描述
上面得到的 all_theta 每一行表示其中一类训练出来的对应的参数

在这里插入图片描述
得到的p矩阵即是最终的分类结果

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值