原文:Github 项目 - YOLOV3 的 TensorFlow 复现 - AIUAI
Github 项目 - tensorflow-yolov3
作者:YunYang1994
论文:yolov3
最近 YunYang1994开源的基于 TensorFlow(TF-Slim) 复现的 YOLOv3 复现,并支持自定义数据集的训练.
该开源项目组成:
- YOLO v3 网络结构
- 权重转换Weights converter (用于将加载的 COCO 权重导出为 TF checkpoint)
- 基础测试 demo
- 支持 GPU 和 CPU 版本的 NMS
- Training pipeline
- 计算 COCO mAP
1. YOLOV3 主要原理
YOLO 目标检测器基于深度卷积网络学习的特征,以检测目标物体.
正如 木盏 博文里的介绍,YOLOV3 对比 YOLOV1 和 YOLOV2,保留的部分有:
[1] - 分而治之, YOLO 系列算法是通过划分单元格进行目标检测,区别只是划分单元格的数量不同.
[2] - 激活函数采用 Leaky ReLU.
[3] - End-to-end 训练,只需一个损失函数,关注网络输入端和输出端.
[4] - YOLOV2 开始,采用 Batch Normalization 作为正则化、加速收敛和避免过拟合的方法,并将 BN 层和 Leaky ReLU 层放在每个卷积层之后.
[5] - 多尺度训练. 平衡速度和准确率,速度快,则准确率相对低;准确率高,则速度相对慢.
YOLO 系列算法的提升,很大一部分也决定于 backbone 网络的提升,如,YOLOV2 的 darknet-19 到 YOLOV3 的 darknet-53. YOLOV3 还提供了 tiny darknet. 速度快,则 backbone 可采用 tiny-darknet;性能好,则 backbone 可采用 darnket-53. YOLO 系列算法比较灵活,特别适合作工程算法.
1.1. 网络结构
该项目里使用了预训练的网络权重,其中,共有 80 个训练的 yolo 物体类别(COCO 数据集).
记物体类别名 - coco.names 为 c
,其是从 1 到 80 的整数,每个数字分别表示对应的类别名标签. 如,c=3
表示的分类物体类别为 cat
.
深度卷积层学习的图像特征,送入到分类器和回归器中,以进行检测预测.(边界框坐标,对应的类别标签,等).
如图:
From yolo系列之yolo v3【深度解析】- 木盏 - CSDN
YOLOV3 结构中,没有 池化层 和 全连接层. 在网络的前向计算过程中,张量的尺寸变换是通过改变卷积核步长来实现的,如:stride=(2, 2),等价于将图像 width 和 height 均缩小一般(即面积缩小到原来的1/4).
而,YOLOV2 中,要进行 5 次张量尺寸的缩小(MaxPool),特征图会缩小到原输入尺寸的 在yolo_v2中,要经历5次缩小,会将特征图缩小到原输入尺寸的 1 / 2 5 1/2^5 1/25,即1/32. 例如,输入图像尺寸为 416x416,则输出特征图尺寸为 13x13 (416/32=13).
YOLOV3 类似于 YOLOV2,backbone 网络会将输出特征图缩小到输入图片的 1/32. 因此,要求输入图片的尺寸为 32 的倍数.
-
DBL: YOLOV3 的基本组件,对应于代码中的Darknetconv2d_BN_Leaky,即:卷积+BN+Leaky relu. YOLOV3 中 BN 和 Leaky ReLU 和卷积层是不可分类的部分(除了最后一层卷积),共同构成了最小组件.
-
resn:
n
代表数字,表示 res_block 里有多少个 res_unit,如 res1,res2, … , res8 等. YOLOV3 借鉴了 ResNet 的残差结构,可以使得网络更深. -
concat:张量拼接操作. 将 darknet 中间层和后面的某一层的上采样进行拼接. 拼接操作和残差层 add 操作是不一样的,拼接会扩充张量的维度,而 add 只是直接相加不会导致张量维度的改变.
Darknet-19 vs Darknet-53 网络层结构 (From yolo系列之yolo v3【深度解析】- 木盏 - CSDN)
YOLOV3 输出了三个不同尺度的特征图 - y1, y2, y3,如图:
这种多尺度预测方式,借鉴了 FPN(Feature pyramid networks),对不同尺寸的目标进行预测,越精细的单元网格( grid cell) 可以检测出越精细的物体.
YOLOV3 设定每个网格单元输出 3 个矩形框box 的预测,每个 box 需要五个参数(x, y, w, h, confidence),再对应 80 个类别的概率,则可得到 3*(5 + 80) = 255.
From YOLOv3代码分析(Keras+Tensorflow)
1.2. 网络输入与输出
[1] - 网络输入:[None, 416, 416, 3]
[2] - 网络输出:矩形框中物体的置信度,矩形框位置的列表,检测到的物体类别名. 每个矩形框表示为 6 个数:(Rx, Ry, Rh, Rw, Pc, C1,…Cn). 其中,n=80,即 c
是 80 维向量. 矩形框最终的向量大小为 5 + 80=85. 如图:
图中第一个数字 Pc
为物体的置信;第二个到第四个数字数字 bx, by, bh, bw
表示矩形框坐标信息;最后的 80 个数字中每个分别表示对应于类别的输出概率.
1.3. 设置 score 阈值过滤边界框
输出结果可能包含多个矩形框,可能是 false positive 结果,或者重叠情况. 如,输入图像尺寸为 [416, 416, 3],YOLOV3 总共采用 9 个 anchor boxes(每个尺寸对应 3 个anchor boxes),则可以得到 (52x52 + 26x26 + 13x13)x3=10647 个矩形框.
因此,需要减少输出结果中的矩形框数量,比如,通过设置 score 阈值.
输入参数:
boxes
: tensor of shape [10647, 4)]scores
: tensor of shape[10647, 80]
containing the detection scores for 80 classes.score_thresh
: float value , fliter boxes with low score
如:
# Step 1: Create a filtering mask based on "box_class_scores" by using "threshold".
score_thresh=0.4
mask = tf.greater_equal(scores, tf.constant(score_thresh))
1.4. NMS 处理
设置 score 阈值过滤预测的矩形框后,还是可能有大量的重叠矩形框. 进一步的操作是,采用 NMS(non-maximum suppression) 算法.
- Discard all boxes with
Pc <= 0.4
- While there are any remaining boxes :
- Pick the box with the largest
Pc
- Output that as a prediction
- Discard any remaining boxes with
IOU>=0.5
with the box output in the previous step
- Pick the box with the largest
如:
for i in range(num_classes):
tf.image.non_max_suppression(boxes, score[:,i], iou_threshold=0.5)
NMS 采用了 IoU(Intersection over Union) 函数. NMS 例示如图:NMS 的输入是 4 个重叠的矩形框,输出是只有一个矩形框.
1.5. 相关材料
[1] - Implementing YOLO v3 in Tensorflow (TF-Slim)
[2] - Object Detection using YOLOv2 on Pascal VOC2012
[3] - Understanding YOLO
[4] - YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练
[5] - 学员分享 | 小哥哥和用YOLOv3做目标检测的故事「文末送课」
[6] - 目标检测|YOLOv2原理与实现(附YOLOv3)
[7] - YOLOv2は、2016年12月25日時点の、速度、精度ともに世界最高のリアルタイム物体検出手法です
2. YOLOV3 项目入手
[1] - 下载项目:
git clone https://github.com/YunYang1994/tensorflow-yolov3.git
[2] - 安装项目依赖项:
cd tensorflow-yolov3
pip3 install -r ./docs/requirements.txt
requirements.txt
:
numpy==1.15.1
Pillow==5.3.0
scipy==1.1.0
tensorflow-gpu==1.11.0
wget==3.2
[3] - 将加载的 COCO 权重导出为 TF Checkpoint - yolov3.ckpt
和 frozen graph - yolov3_gpu_nms.pb
.
下载 [yolov3.weight](wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3.weights),并放到 ./checkpoint/
路径:
wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3.weights
导出权重:
python3 convert_weight.py --convert --freeze
[4] - 利用路径 ./checkpoint/
中的 .pb
文件,运行测试 demo:
python3 nms_demo.py
python3 video_demo.py # if use camera, set video_path = 0
如:
3. YOLOV3 训练
3.1. 下载预训练权重文件
YOLOV3 使用在Imagenet上预训练好的模型参数(文件名称: darknet53.conv.74,大小76MB)基础上继续训练.
darknet53.conv.74下载链接: https://pjreddie.com/media/files/darknet53.conv.74.
wget https://pjreddie.com/media/files/darknet53.conv.74
3.2. 快速入手训练
这里给出 YOLOV3 训练过程的简单示例.
采用 python3 core/convert_tfrecord.py
将图片数据集转换为 tfrecords 文件.
python3 core/convert_tfrecord.py \
--dataset /data/train_data/quick_train_data/quick_train_data.txt \
--tfrecord_path_prefix /data/train_data/quick_train_data/tfrecords/quick_train_data
python3 quick_train.py # start training
3.3. 训练 COCO 数据集
[1] - 首先,需要下载 COCO2017 数据集,并放到路径 ./data/train_data/COCO
中.
cd data/train_data/COCO
wget http://images.cocodataset.org/zips/train2017.zip
unzip train2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip
[2] - 提取 COCO 数据集中的一些有用信息,如边界框(bounding box), category id 等,并生成 .txt
文件.
python3 core/extract_coco.py --dataset_info_path ./data/train_data/COCO/train2017.txt
即可得到 ./data/train_data/COCO/train2017.txt
. 每一行为一个样本,如:
/path/to/data/train_data/train2017/000000458533.jpg 20 18.19 6.32 424.13 421.83 20 323.86 2.65 640.0 421.94
/path/to/data/train_data/train2017/000000514915.jpg 16 55.38 132.63 519.84 380.4
# image_path, category_id, x_min, y_min, x_max, y_max, category_id, x_min, y_min, ...
[3] - 接着,将图像数据集转换为 .tfrecord
数据集,以二进制文件的方式存储数据. 之后,即可进行模型训练.
python3 core/convert_tfrecord.py \
--dataset ./data/train_data/COCO/train2017.txt \
--tfrecord_path_prefix ./data/train_data/COCO/tfrecords/coco \
--num_tfrecords 100
python3 train.py
以 YOLOV2 的训练过程为例:
3.4. 在 COCO 数据集上的评估验证(待续)
cd data/train_data/COCO
wget http://images.cocodataset.org/zips/test2017.zip
wget http://images.cocodataset.org/annotations/image_info_test2017.zip
unzip test2017.zip
unzip image_info_test2017.zip
4. YOLOV3 模型定义
#! /usr/bin/env python3
# coding=utf-8
#================================================================
# Copyright (C) 2018 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : common.py
# Author : YunYang1994
# Created date: 2018-11-20 10:22:32
# Description : some basical layer for daraknet53 and yolov3
#
#================================================================
import tensorflow as tf
slim = tf.contrib.slim
def _conv2d_fixed_padding(inputs, filters, kernel_size, strides=1):
if strides > 1: inputs = _fixed_padding(inputs, kernel_size)
inputs = slim.conv2d(inputs, filters, kernel_size, stride=strides,
padding=('SAME' if strides == 1 else 'VALID'))
return inputs
@tf.contrib.framework.add_arg_scope
def _fixed_padding(inputs, kernel_size, *args, mode='CONSTANT', **kwargs):
"""
Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
mode: The mode for tf.pad.
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]],
mode=mode)
return padded_inputs
#! /usr/bin/env python3
# coding=utf-8
#================================================================
# Copyright (C) 2018 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : yolov3.py
# Author : YunYang1994
# Created date: 2018-11-21 18:41:35
# Description : YOLOv3: An Incremental Improvement
#
#================================================================
import numpy as np
import tensorflow as tf
from core import common, utils
slim = tf.contrib.slim
class