自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 D*算法(C++/MATLAB)

D*算法(C++/MATLAB)

2023-09-20 20:20:42 765 1

原创 A*(A星,Astar)路径规划算法及C++、MATLAB代码

介绍A*(A星,Astar)路径规划算法

2023-09-14 23:29:10 2252

原创 MATLAB画三维曲面(surf,mesh)以及不规则meshgrid

matlab 三维曲面 surf mesh 不规则meshgrid 非矩形meshgrid

2023-09-12 11:17:28 2000

原创 深入解析基于DWA的路径规划算法MATLAB

路径规划 动态窗口法 DWA

2023-09-10 00:25:04 1855

原创 深度优先搜索和广度优先搜索(C++、MATLAB代码迷宫应用)

深度优先搜索 广度优先搜索 DFS BFS

2023-09-07 22:57:34 1009 1

原创 LQR 控制器

LQR 控制器 黎卡提方程

2023-09-07 14:36:48 1343

原创 简单入门--带约束线性模型预测控制

模型预测控制 约束 QP

2023-09-05 22:28:53 1827 5

原创 简单入门--无约束线性模型预测控制

模型预测控制

2023-09-03 22:33:36 856 2

原创 MATLAB如何画动图GIF

MATLAB 动态曲线曲面绘制与保存

2023-09-01 15:03:55 5616 2

原创 AttributeError: module ‘keras.backend‘ has no attribute ‘control_flow_ops‘

报错:Using TensorFlow backend.WARNING:tensorflow:From /tensorflow-1.15.2/python3.7/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is depreca

2021-07-14 16:39:20 790

原创 零基础入门CV - 街景字符编码识别 用yolov3和yolov3_tiny教程(同一博客组所写)-单一模型,正确率可以达到91%

一、从官方依次下载文件并解压:对于新手稍微提一下,这个数据集是通过下载下来的链接下载的。直接输入网址,打开既开始下载!.json文件不是下载,是复制。点开链接,创建一个.json文件,复制到里面即可。(我也不知道为啥,反正我下载的时候就这样)我们会发现训练集为30000张图片,验证集为10000张图片。注意:(.json文件不是下载,是复制。点开链接,创建一个.json文件,复制到里面即可)数据集下载好,首先要把.json文件转换为我们所需要的的txt文件。为了防止图片不连续,这里先生成图片

2021-07-01 22:37:57 379

原创 c语言实现1、链表删除 倒置 插入 得到长度 查找 退出功能 2、栈的基本操作

# include<stdio.h># include<stdlib.h>/*s声明一个结构体*/typedef struct nood{ int data; struct nood *next;} link_list;/*创建带头链表*/ link_list *creat_head(){ int x; link_list *head,*p,*r; p=(link_list *)malloc(sizeof(link_list)); p->n

2021-07-01 22:01:49 319 1

原创 python修改.txt文件中指定某些值

一、正文我要把.txt文件中的,F:/slide_dataSets/slide/Voc2007_1\JPEGImages\换成/content/drive/MyDrive/voc_2007_crack/Voc2007_1/data原来txt文件格式:F:/slide_dataSets/slide/Voc2007_1\JPEGImages\00524_270d.jpg 30,102,81,196,0 21,2,49,97,0 132,106,191,159,0 69,40,127,97,0F

2021-04-29 13:08:44 982 1

原创 tf.losses.get_regularization_loss() 和 tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)的区别

一、 引言对于模型的训练过程中,为了防止过拟合,往往会加入一些措施,比如说dropout,l1正则化,l2正则化等。这里简单替一下,怎么加入正则化。二、加入正则化2.1 方式一(定义参数时候,加入正则化,这个是对于tf.nn): dwise_weight = tf.get_variable(name='depthwise_weights', dtype=tf.float32, trainable=True,

2021-04-19 12:54:32 3580 4

原创 YOLO数据预处理或则训练时出现ValueError: invalid literal for int() with base 10: ‘‘64.1245678,解决方式

报错:ValueError: invalid literal for int() with base 10: ''64.1245678解决方式:在做目标检测的时候,方框xmin,ymin,xmax,ymax含有小数的时候,在train时候,位置:bboxes = np.array([list(map(int, box.split(','))) for box in line[1:]])容易报错:ValueError: invalid literal for int() with base 10: '

2021-04-10 17:00:51 1178 4

原创 怎么把Voc2007,VOC2012数据集其中一个或者几个类别提出来作为小型数据集,来测试搭建的模型!!!以及yolov3损失函数:giou改为平方差损失。

前言:在目标检测中,有些时候,我们需要一些小型的数据集来看看自己的模型怎么样。自己制作数据集,太费事,耗时间。那么我们可以把VOC2007 或者VOC2012数据集中的一个类别拿出来实验。这里教你怎么把你需要的类别拿出来!一 把你需要的类别.xml文件和图片找出来运行下方代码就可以了:你只需要修改对应的路径,和下方的classes1,classes2,选择你需要的类别,如果只需要一个类别的话,就把下方的****:for k in range(0, len(ind_start))????**里面对应的c

2021-03-23 18:37:21 1428 6

原创 tensorflow实现计算模型大小和FLOPS!以及与.ckpt和weight文件大小转换说明!Model‘ object has no attribute ‘get_operations‘!

一、计算参数量和FOPS代码本人觉得下面这个代码出错率少,因为沾到.pb文件,有些时候你总是要出点错,比如说:AssertionError: output is not in graph而且你去把节点打印出来后,把输出节点换上,还是错,不可思议。算了,你直接把你的模型输入,下面的框框! # 模型开始处×××××××××××××××××××××××××××× # ***** (1) Create Graph ***** input_data = tf.Variable(ini

2021-03-15 23:08:09 3562 5

原创 TensorFlow_yolov3测试map函数的流程,以及几个yolov3大神版本的优缺点!教你选择哪个TensorFlow_yolov3代码!以及使用TensorFlow1.x实现yolov3全集

一、前言当你模型训练好了以后,可以看看你自己的模型效果怎么样,就需要测试其map。yunyang1994的yolov3版本已经把代码写好,直接使用,很方便。二、使用步骤一、实现修改config.py函数__C.TEST.ANNOT_PATH = "./data/dataset/voc_test.txt"__C.TEST.BATCH_SIZE = 2__C.TEST.INPUT_SIZE = 416__C.TEST.DATA

2021-03-09 23:25:48 511 5

原创 过拟合、欠拟合的通俗理解!过拟合和欠拟合的解决办法,以及dropout和正则化的讲解,代码实现(对于mnist数据集)!

这里写目录标题一 、过拟合、欠拟合的通俗理解二、欠拟合和过拟合的解决办法一、欠拟合二、过拟合一 、在网络深度中加入dropout()层次二、正则化一、L2正则化:二、图像增强三、模型参数的选择一、首先开发一个过拟合模型二、抑制过拟合三 、参数选择四、代码证明(dropout)一 、过拟合、欠拟合的通俗理解一味追求提高对训练数据的预测能力,所选模型的复杂度则 往往会比真模型更高。这种现象称为过拟合(over-fitting)。过拟合 是指学习时选择的模型所包含的参数过多,以致于出现这一模型对已 知数据预测

2021-01-27 13:02:35 8688 1

原创 使用netron画深度学习框架图或则其他应用时报错:OSError: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试 我们这样手把手教你解决!!

使用netron进行画我们的网络框架图的时候,当我们输入:import netronnetron.start(R"D:\tensorflow-yolov3\keras-yolo3-master\keras-yolo3-master\model_data\yolo.h5",log=False,browse=True, port=8888, host='localhost')容易出现下面的报错:OSError Traceback (m

2021-01-22 00:10:12 735 1

原创 python pip安装时报错:WARNING: Retrying等错误 这样解决!!aconda安装库安装很久没有反应,最后报错!

python 出现以下报错,是由于你VPN打开了,没有关掉。WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', OSError(0, 'Error'))': /simple/netron/WARNING: Retrying (Retry(total=

2021-01-21 17:02:29 4250 2

原创 tensorflow_quantum 量子位的探讨!量子门的一些基本使用!基于TensorFlow_quantum的mnist分类!

文章目录一、tensorflow_quantum 量子位的探讨二、一些基础门的使用一、X门(经典逻辑里面的非门)二、H门(把量子位变成混合态)三、基于TensorFlow_quantum mnist 分类一、tensorflow_quantum 量子位的探讨由于需要学习基于TensorFlow_quantum库,把量子卷积层和经典的深度学习相结合,这里介绍一下,cirq和量子门的一些基础知识,和容易想不通的几点小知识。自己也是初学者,相当于自己做笔记。我们容易知道量子计算里面的基本状态是: (0,1

2021-01-14 14:34:20 1927 9

原创 adaboost算法MATLAB实现!李航统计学习例子matlab实现!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、例子二、算法实现结果前言提升方法基于这样一种思想:对于一个复杂任务来说,将多个专 家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独 的判断好。实际上,就是“三个臭皮匠顶个诸葛亮”的道理。这里主要是对李航统计学习书上的例子复现,对于理论不做介绍。一、例子二、算法实现代码如下(示例):clcclear%初始权重w = [1 1 1 1 1 1 1 1 1 1];%对应的输出H = [];

2020-12-17 15:55:58 1265 2

原创 AdaBoost算法讲解以及MATLAB实现

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、算法描述二、算法步骤是什么?三、数据集说明(可以自己增加数据集)四、算法实现MATLAB1.主函数2.找到误差率最小的弱函数3.分别计算弱分类函数,并计算其误差率六、结果演示一、算法描述AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训

2020-12-17 15:23:58 3013 1

原创 YOLOv3:将yolov3的.weights文件转换为keras、tensorflow等模型所需的.h5文件的图文教程,以及常见错误解决思路

YOLOv3:将yolov3的.weights文件转换为keras、tensorflow等模型所需的.h5文件的图文教程,以及常见错误解决思路一、首先下载YOLOv3代码和yolov3.weights,二、打开Anaconda Prompt (ANACONDA),跳到你放文件夹的地方三、进入你的文件夹四、开始转换六、没有安装Anaconda,使用的pycharm怎么转换7、容易犯的错误一、首先下载YOLOv3代码和yolov3.weights,代码网址:https://github.com/qqwwee

2020-11-24 22:54:52 3326 11

原创 tensorflow 自己制作Mnist数据集,用训练好的模型来测试准确度。手把手教你实现!教你怎么调用自己已经训练好的模型!清晰易懂!加深你对卷积CNN的理解

很多同学都实现了,TensorFlow对于mnist自带的数据集,来训练模型和测试。这里对于tensorflow 自己制作Minist数据集,用训练好的模型来测试准确率。加深你对卷积神经网络的理解。首先我们需要利用已知的mnist数据集来训练模型,代码和结果如下:import tensorflow as tffrom tensorflow.keras import layers ,modelsfrom tensorflow.examples.tutorials.mnist import input

2020-11-23 23:29:27 3721 2

原创 使用tf.keras.models.load_model()加载模型的时候,出现File “h5py\h5f.pyx“, line 88, in h5py.h5f.open OSError错误

TensorFlow训练模型的时候,我们习惯把训练的模型,保存下来。不然谁想把自己训练了几天的模型,每次都重新开始训练。但是在加载自己已经训练好的模型,容易出现以下的问题提示,看了下其他博客的解决方案,并没有解决: Traceback (most recent call last): File "D:\研究生资料\tensorflow\未命名0.py", line 10, in <module> new_model =tf.keras.models.load_model('D

2020-11-23 20:33:46 11698 2

原创 提升方法AdaBoost算法,python完整代码实现!!!!!!,代码详细,好理解。

提升方法AdaBoost算法文章目录前言一、代码实现二、运行结果前言提升方法基于这样一种思想:对于一个复杂任务来说,将多个专 家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独 的判断好。实际上,就是“三个臭皮匠顶个诸葛亮”的道理。一、代码实现iris数据集共有四个特征,该代码分别采取iris的0,1 和 2,3两个特征,分别用sklearn中的AdaBoostClassifier进行分类,并打分,并可视化。详细代码如下。from matplotlib import pyplot a

2020-11-19 09:47:35 1014 1

原创 深度学习入门!四种方式实现minist分类!全部详细代码实现!Cnn(卷积神经网络,两种方式),感知机(Bp神经网络),逻辑回归!代码详细注释!!minist数据集该怎么使用?

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、cnn实现minist代码二、多层感知器三.逻辑回归实现minist代码总结前言minist数字识别,是深度学习入门数据集。这里使用了三种方式来实现对minist数字分类。分别是逻辑回归,两层感知机,以及我们熟悉的cnn(卷积神经网络)。这里是基于tensorflow来实现的代码。很好入门。一、cnn实现minist代码import timeimport tensorflow as tfimport numpy

2020-11-18 18:13:35 6736 8

原创 numpy.meshgrid()理解!以及列子说明,代码实现!详细,一看就懂,清晰易懂!!!!

文章目录前言一、meshgrid功能 : 生成指定的矩阵二、生成的矩阵的行数与列数与什么有关?三、 有什么作用?前言numpy.meshgrid对于画三维图,和多分类图特别有用。一、meshgrid功能 : 生成指定的矩阵import numpy as np x = np.arange(-2, 2, 0.5)#[-2. -1.5 -1. -0.5 0. 0.5 1. 1.5]y = np.arange(-2, 2, 0.5)#[-2. -1.5 -1. -0.5 0

2020-11-14 16:32:21 2015 1

原创 最大熵模型怎么理解?熵是什么??

最大熵模型怎么理解?熵是什么??最大熵模型的理解!以及熵的理解!前言一、熵是什么?二、最大熵原理是什么三、最大熵模型的定义前言最大熵模型在机器学习里面很重要,很重要,很重要(重要的事情说三遍)!但是也比较难理解。很多人连熵代表混乱度都没法理解,所以写这篇文章,希望可以帮助你们理解!一、熵是什么?首先我们来看一个简单的列子:u1,u2,u3…为输入,v1,v2,v3…为输出。p1,p2,p3…代表u1,u2,u3…发生的概率。易知:这里的 I(ui)代表的是信息发生前的不确定性。很容易

2020-11-06 23:38:16 2659 5

原创 什么是CART算法?怎么对CART进行建树?怎么对CART进行减枝叶?CART Python实现代码

什么是CART算法?怎么对CART进行建树?怎么对CART进行减枝叶?CART Python实现代码一.什么是决策树?二.什么是CART树三.基尼指数四.基尼指数在这里为什么Gini(D)系数越小,样本纯度越高?五.什么是剪枝?六.为什么需要剪枝叶?七. 如何去剪枝八. 后剪枝是根据什么来剪枝的?九,测试结果十. 代码一.什么是决策树?决策树是一种基本的分类与回归方法。决策树的生成算法主要有ID3,C4.5和CART等。决策树是一种树形结构,每一个内部的节点代表的是样本特征属性上的判断,每一个分支是根据

2020-10-30 23:44:54 1281 1

原创 MATLAB非线性规划入门fmincon函数及传额外传参数

导读:在工程、科学和金融等领域,非线性规划(Nonlinear Programming,简称NLP)是一个常见而重要的问题。MATLAB提供了强大的非线性规划求解工具,其中最常用的函数之一是fmincon。本文将介绍fmincon函数的基本用法以及如何在MATLAB中使用它来解决非线性规划问题。

2020-10-22 11:22:46 24364 10

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除