# 论文地址https://arxiv.org/abs/2502.13103
在农业生产领域,杂草是导致作物减产的重要因素之一。它们与作物争夺养分、水分和空间,严重影响作物的生长和产量。随着全球人口增长,对粮食的需求不断攀升,精准有效的杂草管理愈发关键。今天为大家解读的论文WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields,提出了一种全新的数据集 WeedsGalore,为解决玉米田杂草识别和管理问题带来了新的思路和方法。

一、研究背景
传统的除草方式,无论是化学除草还是机械除草,都存在一定的弊端。化学除草易造成环境污染,过度使用还会使杂草产生抗药性;机械除草则成本较高,且效率有限。精准农业中的定点除草技术(SSWM),能够根据杂草的分布情况有针对性地进行除草,减少化学药剂的使用和对环境的影响,是未来农业发展的重要方向。而实现这一技术的关键在于获取高精度的杂草分布数据,并借助先进的模型进行精准识别和定位。但目前,适用于玉米田杂草分割的公开数据集非常有限,尤其是包含多光谱信息的无人机(UAV)数据集更为稀缺,这限制了相关研究和技术的发展。
二、WeedsGalore 数据集
(一)数据采集
WeedsGalore 数据集的采集工作在德国波茨坦的一块约 1840 平方米的玉米田进行。农民按照常规的种植和管理方式操作,保证了数据的真实性和代表性。数据采集时间涵盖了玉米不同的生长阶段,从 2023 年 5 月 25 日

最低0.47元/天 解锁文章
24万+

被折叠的 条评论
为什么被折叠?



