WeedsGalore 数据集:助力玉米田杂草精准识别(论文解读)

# 论文地址https://arxiv.org/abs/2502.13103

在农业生产领域,杂草是导致作物减产的重要因素之一。它们与作物争夺养分、水分和空间,严重影响作物的生长和产量。随着全球人口增长,对粮食的需求不断攀升,精准有效的杂草管理愈发关键。今天为大家解读的论文WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields,提出了一种全新的数据集 WeedsGalore,为解决玉米田杂草识别和管理问题带来了新的思路和方法。

图片

一、研究背景

传统的除草方式,无论是化学除草还是机械除草,都存在一定的弊端。化学除草易造成环境污染,过度使用还会使杂草产生抗药性;机械除草则成本较高,且效率有限。精准农业中的定点除草技术(SSWM),能够根据杂草的分布情况有针对性地进行除草,减少化学药剂的使用和对环境的影响,是未来农业发展的重要方向。而实现这一技术的关键在于获取高精度的杂草分布数据,并借助先进的模型进行精准识别和定位。但目前,适用于玉米田杂草分割的公开数据集非常有限,尤其是包含多光谱信息的无人机(UAV)数据集更为稀缺,这限制了相关研究和技术的发展。

二、WeedsGalore 数据集

(一)数据采集

WeedsGalore 数据集的采集工作在德国波茨坦的一块约 1840 平方米的玉米田进行。农民按照常规的种植和管理方式操作,保证了数据的真实性和代表性。数据采集时间涵盖了玉米不同的生长阶段,从 2023 年 5 月 25 日

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bryan Ding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值