【中国剩余定理】POJ1006[Biorhythms]题解

题目概述

人体的体力每23天会达到峰值,情感每28天会达到峰值,智力每33天会达到峰值,一个人在a天体力达到峰值,b天情感达到峰值,c天智力达到峰值,求这个人下一次体力情感智力均达到峰值的天数减去d。

解题报告

我们的目的是求 S=a1+T1k1=a2+T2k2=a3+T3k3 。也就是说:
Sa1(mod T1)
Sa2(mod T2)
Sa3(mod T3)
用中国剩余定理求解即可(题目太水,可以暴力枚举水过=_=)。

示例程序

#include<cstdio>
using namespace std;
const int maxn=3,T=21252;

int a[maxn+5],b[maxn+5],st,ans;

int exgcd(int a,int b,int &x,int &y)
{
    if (!b) {x=1;y=0;return a;}
    int r=exgcd(b,a%b,x,y),t=x;x=y;y=t-a/b*y;
    return r;
}
int China(int *w,int *m,int n)
{
    int lcm=1,ans=0;for (int i=1;i<=n;i++) lcm*=m[i];
    for (int i=1;i<=n;i++)
    {
        int x,y,M=lcm/m[i];exgcd(M,m[i],x,y);
        ans=(ans+x*M*w[i])%lcm;
    }
    return (ans+lcm)%lcm;
}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    b[1]=23;b[2]=28;b[3]=33;
    scanf("%d%d%d%d",&a[1],&a[2],&a[3],&st);
    int te=0;
    while (~a[1]||~a[2]||~a[3]||~st)
    {
        ans=(China(a,b,3)-st)%T;if (ans<=0) ans+=T;
        printf("Case %d: the next triple peak occurs in %d days.\n",++te,ans);
        scanf("%d%d%d%d",&a[1],&a[2],&a[3],&st);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值