题目概述
给出一个序列
{An}
和
m
个询问,每个询问求区间
解题报告
这道题显然可以用莫队乱搞,但是还有另一种做法。
记录
nxt[i]
表示
>i
且
Ai=Aj
的第一个
j
,那么当
所以考虑离线,按照左端点对询问进行排序。那么对于一个询问,之前的左端点到当前左端点这一段就不会再有贡献了,所以将这一段所有点的 nxt[i] 标记为有贡献,然后用树状数组求出 [L,R] 有贡献的点有几个就行了。
示例程序
#include<cstdio>
#include<algorithm>
#define fr first
#define sc second
using namespace std;
const int maxn=50000,maxm=200000,maxa=1000000;
int n,m,a[maxn+5],ID[maxm+5];
int nxt[maxn+5],lst[maxa+5],ans[maxm+5];
pair<int,int> q[maxm+5];
#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline char readc()
{
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
if (l==r) return EOF; else return *l++;
}
inline int readi(int &x)
{
int tot=0,f=1;char ch=readc(),lst='+';
while ('9'<ch||ch<'0') {if (ch==EOF) return EOF;lst=ch;ch=readc();}
if (lst=='-') f=-f;
while ('0'<=ch&&ch<='9') tot=(tot<<3)+(tot<<1)+ch-48,ch=readc();
return x=tot*f,Eoln(ch);
}
inline bool cmp(int a,int b) {return q[a]<q[b];}
int c[maxn+5];
void Update(int x,int tem) {for (int p=x;p<=n;p+=p&-p) c[p]+=tem;}
int Sum(int x) {int sum=0;for (int p=x;p;p-=p&-p) sum+=c[p];return sum;}
int main()
{
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
readi(n);
for (int i=1;i<=n;i++)
{
readi(a[i]);
if (!lst[a[i]]) Update(i,1); else nxt[lst[a[i]]]=i;
lst[a[i]]=i;
}
readi(m);for (int i=1;i<=m;i++) ID[i]=i,readi(q[i].fr),readi(q[i].sc);
sort(ID+1,ID+1+m,cmp);
for (int i=1,now=1;i<=m;i++)
{
for (;now<q[ID[i]].fr;now++) if (nxt[now]) Update(nxt[now],1);
ans[ID[i]]=Sum(q[ID[i]].sc)-Sum(q[ID[i]].fr-1);
}
for (int i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}