题目概述
给出一个序列
{an}
和
m
个询问,每次询问
解题报告
这种题目感觉很有运气成分啊……脑子没转过来就想不到了……
要求 [L,R] 内某个数的出现次数,主席树可以轻松解决,但是怎么知道有没有满足要求的数呢?
如果存在满足要求的数,那么意味着 [L,R] 内其他数的出现次数加起来依然没有该数出现次数多,所以用这条性质就可以搞事情了:在询问 [L,R] 时,比较权值线段树左边的出现次数和右边的出现次数,则答案一定在多的那一边(或没有答案),如此询问下去就知道是否存在满足的数了。
示例程序
#include<cstdio>
#include<algorithm>
#define fr first
#define sc second
#define mp make_pair
using namespace std;
const int maxn=5*1e5,maxt=2*1e7;
int n,m;
struct node
{
node* son[2];int sum;
void Pushup() {sum=son[0]->sum+son[1]->sum;}
};
typedef node* P_node;
node tem[maxt+5];P_node si=tem,ro[maxn+5];
#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline char readc()
{
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
if (l==r) return EOF; else return *l++;
}
inline int readi(int &x)
{
int tot=0,f=1;char ch=readc(),lst='+';
while ('9'<ch||ch<'0') {if (ch==EOF) return EOF;lst=ch;ch=readc();}
if (lst=='-') f=-f;
while ('0'<=ch&&ch<='9') tot=(tot<<3)+(tot<<1)+ch-48,ch=readc();
return x=tot*f,Eoln(ch);
}
P_node Build(int L,int R)
{
P_node now=si++;now->sum=0;if (L==R) return now;int mid=L+(R-L>>1);
now->son[0]=Build(L,mid);now->son[1]=Build(mid+1,R);return now;
}
P_node Insert(P_node p,int pos,int l=1,int r=n)
{
P_node now=si++;*now=*p;if (l==r) {now->sum++;return now;}int mid=l+(r-l>>1);
if (pos<=mid) now->son[0]=Insert(p->son[0],pos,l,mid); else
now->son[1]=Insert(p->son[1],pos,mid+1,r);now->Pushup();return now;
}
#define Sum(L,R) ((R)->sum-(L)->sum)
pair<int,int> Ask(P_node L,P_node R,int l=1,int r=n)
{
if (l==r) return mp(Sum(L,R),l);int mid=l+(r-l>>1);
if (Sum(L->son[0],R->son[0])>Sum(L->son[1],R->son[1])) return Ask(L->son[0],R->son[0],l,mid); else
return Ask(L->son[1],R->son[1],mid+1,r);
}
int main()
{
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
readi(n);readi(m);ro[0]=Build(1,n);
for (int i=1,x;i<=n;i++) readi(x),ro[i]=Insert(ro[i-1],x);
for (int i=1,x,y;i<=m;i++)
{
readi(x);readi(y);pair<int,int> ans=Ask(ro[x-1],ro[y]);
if (ans.fr<=(y-x+1)/2) ans.sc=0;printf("%d\n",ans.sc);
}
return 0;
}