【Lucas定理+高维前缀和】2017.10.26杂题[虚妄之诺]题解

题目概述

写到一半电脑重启了,不想写了。

解题报告

神题……我自己根本想不出来。

首先观察一个深度为 dep 节点(以 dep=4 为例),发现贡献是这样的:

x=0:1  1  1  1  1
x=1:1  2  3  4  5
x=2:1  3  6 10 15
x=3:1  4 10 20 35
x=4:1  5 15 35 70
x=5:.............
...

WTF?杨辉三角?所以贡献是组合数的形式,容易得出公式为 (dep+x1dep) 。由于是异或,所以只要贡献为奇数的节点,根据Lucas定理,得出只有当 (dep+x1) and dep=dep 时才有贡献,转化一下就是 (x1) and dep=0 。分析这个式子很容易发现当 x1 太大的时候就会和之前的答案一样,所以我们将 x1 变成和 dep 一样的级别。

这是一个经典的高维前缀(异或)和问题,于是就很简单了。

示例程序

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=200000,maxs=262144,Log=18;

int n,te,dep[maxn+5];LL a[maxn+5],f[maxs+5];
int E,lnk[maxn+5],nxt[maxn*2+5],son[maxn*2+5];

#define Add(x,y) son[++E]=(y),nxt[E]=lnk[(x)],lnk[(x)]=E
void Dfs(int x,int fa=0)
{
    for (int j=lnk[x];j;j=nxt[j]) if (son[j]!=fa)
        dep[son[j]]=dep[x]+1,Dfs(son[j],x);
}
int main()
{
    freopen("C.in","r",stdin);
    freopen("C.out","w",stdout);
    scanf("%d%d",&n,&te);
    for (int i=1,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,Add(x,y),Add(y,x);
    for (int i=1;i<=n;i++) scanf("%lld",&a[i]);Dfs(1);
    for (int i=1;i<=n;i++) f[dep[i]^(maxs-1)]^=a[i];
    for (int i=0;i<Log;i++)
    for (int s=0;s<maxs;s++) if (!(s&(1<<i)))
        f[s]^=f[s|(1<<i)];
    for (LL x;te;te--)
    {
        scanf("%lld",&x);x&=maxs-1;
        if (!x) printf("%lld\n",a[1]); else printf("%lld\n",f[x-1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值