题目概述
写到一半电脑重启了,不想写了。
解题报告
神题……我自己根本想不出来。
首先观察一个深度为 dep 节点(以 dep=4 为例),发现贡献是这样的:
x=0:1 1 1 1 1
x=1:1 2 3 4 5
x=2:1 3 6 10 15
x=3:1 4 10 20 35
x=4:1 5 15 35 70
x=5:.............
...
WTF?杨辉三角?所以贡献是组合数的形式,容易得出公式为 (dep+x−1dep) 。由于是异或,所以只要贡献为奇数的节点,根据Lucas定理,得出只有当 (dep+x−1) and dep=dep 时才有贡献,转化一下就是 (x−1) and dep=0 。分析这个式子很容易发现当 x−1 太大的时候就会和之前的答案一样,所以我们将 x−1 变成和 dep 一样的级别。
这是一个经典的高维前缀(异或)和问题,于是就很简单了。
示例程序
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=200000,maxs=262144,Log=18;
int n,te,dep[maxn+5];LL a[maxn+5],f[maxs+5];
int E,lnk[maxn+5],nxt[maxn*2+5],son[maxn*2+5];
#define Add(x,y) son[++E]=(y),nxt[E]=lnk[(x)],lnk[(x)]=E
void Dfs(int x,int fa=0)
{
for (int j=lnk[x];j;j=nxt[j]) if (son[j]!=fa)
dep[son[j]]=dep[x]+1,Dfs(son[j],x);
}
int main()
{
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
scanf("%d%d",&n,&te);
for (int i=1,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,Add(x,y),Add(y,x);
for (int i=1;i<=n;i++) scanf("%lld",&a[i]);Dfs(1);
for (int i=1;i<=n;i++) f[dep[i]^(maxs-1)]^=a[i];
for (int i=0;i<Log;i++)
for (int s=0;s<maxs;s++) if (!(s&(1<<i)))
f[s]^=f[s|(1<<i)];
for (LL x;te;te--)
{
scanf("%lld",&x);x&=maxs-1;
if (!x) printf("%lld\n",a[1]); else printf("%lld\n",f[x-1]);
}
return 0;
}