最短路之Floyd算法

Floyd算法不能判断负环
算法思路
判断是否可以通过中转点 k 使 ij 的距离减小
如图
在这里插入图片描述
设i-j为100
i-k为40
k-j为40
显然通过k的中转 从i到j所耗费的路程变短了

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define IOS ios::sync_with_stdio(false)
#define endl '\n'

using namespace std;
typedef long long ll;

const int maxn = 205;
int n, m, mat[maxn][maxn];
int main() {
    while (scanf("%d%d", &n, &m) != EOF) {
        for (int i = 0;i < n;++i) {//初始化邻接矩阵
            for (int j = 0;j < n;++j) {
                if (i == j)mat[i][j] = 0;//自己到自己的距离为0
                else mat[i][j] = INF;
            }
        }
        for (int i = 0;i < m;++i) {
            int x, y, z;
            scanf("%d%d%d", &x, &y, &z);//读入每条边
            mat[x][y] = min(mat[x][y], z);//无向图所以需要读入两次
            mat[y][x] = min(mat[y][x], z);//读入过程维护最小值
        }
        int s, t;
        scanf("%d%d", &s, &t);
        for (int k = 0;k < n;++k)//用中继点中转
            for (int i = 0;i < n;++i)
                for (int j = 0;j < n;++j)
                    mat[i][j] = min(mat[i][j], mat[i][k] + mat[k][j]);//i直接到j的距离是否比i到k+k到j的距离大
                    //若是 则更新最小值 此外 每个顶点都有可能使i到j的距离变小 所以需要遍历每个顶点(k)
        if (mat[s][t] == INF)cout << -1 << endl;//如果为INF说明 s到t不通 
        else printf("%d\n", mat[s][t]);
    }
    return 0;
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值