spfa 判断负环

SPFA判断负环

基本过程与spfa求最短路相同,但是额外记录一个 cnt数组,表示到当前点的最短路经过的边的条数,如果cnt[i]>=n说明一定存在一个负环。

此外,初始化队列的时候,要将所有点都加入队列,因为1可能到不了负环存在的位置。

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
#define MOD 998244353
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
#define debug(x,y) cerr << (x) << " == " << (y) << endl;
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
//template<typename T> T qmi(T a, T b = mod - 2, T p = mod) { T res = 1; b %= (p - 1 == 0 ? p : p - 1); while (b) { if (b & 1) { res = (LL)res * a % p; }b >>= 1; a = (LL)a * a % p; }return res % mod; }

const int N = 1e5 + 10;
int n, m;
vector<PII>vec[N];
int d[N], cnt[N];
bool vis[N];

bool spfa() {
    queue<int>q;
    memset(d, 0x3f, sizeof d);
    d[1] = 0;
    vis[1] = true;
    for (int i = 1; i <= n; ++i)q.push(i);

    while (q.size()) {
        int t = q.front();
        q.pop();

        vis[t] = false;

        for (int i = 0; i < vec[t].size(); ++i) {
            int j = vec[t][i].second;
            int dis = vec[t][i].first;

            if (d[j] > d[t] + dis) {
                d[j] = d[t] + dis;
                if (!vis[j])q.push(j);
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n)return true;
            }

        }
    }

    return false;
}
void solve() {
    cin >> n >> m;
    while (m--) {
        int u, v, w; scanf("%d%d%d", &u, &v, &w);
        vec[u].push_back({ w,v });
    }

    if (spfa())puts("Yes");
    else puts("No");

}

signed main() {
    // int _; cin >> _;
    // while (_--)
        solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值