AcWing1277. 维护序列 (区间修改 + 区间查询)

AcWing1277. 维护序列

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。

有长为 NN 的数列,不妨设为 a1,a2,…,aN

有如下三种操作形式:

  1. 把数列中的一段数全部乘一个值;
  2. 把数列中的一段数全部加一个值;
  3. 询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模 P 的值。
输入格式

第一行两个整数 N 和 P;

第二行含有 N 个非负整数,从左到右依次为 a 1 , a 2 , … , a N a_1,a_2,…,a_N a1,a2,,aN

第三行有一个整数 M,表示操作总数;

从第四行开始每行描述一个操作,输入的操作有以下三种形式:

  • 操作 11:1 t g c,表示把所有满足 t ≤ i ≤ g t≤i≤g tig a i a_i ai 改为 a i × c a_i×c ai×c
  • 操作 22:2 t g c,表示把所有满足 t ≤ i ≤ g t≤i≤g tig a i a_i ai 改为 a i + c a_i+c ai+c
  • 操作 33:3 t g,询问所有满足 t ≤ i ≤ g t≤i≤g tig a i a_i ai 的和模 P P P 的值。

同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

输出格式

对每个操作 3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

数据范围

1 ≤ N , M ≤ 1 0 5 1≤N,M≤10^{5} 1N,M105
1 ≤ t ≤ g ≤ N 1≤t≤g≤N 1tgN,
0 ≤ c , a i ≤ 1 0 9 0≤c,ai≤10^{9} 0c,ai109,
1 ≤ P ≤ 1 0 9 1≤P≤10^{9} 1P109

代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<string>
#include<cstring>
#include<map>
#include<vector>
#include<set>
#include<stack>
#include<cmath>
#include<algorithm>
#include<vector>
#include<utility>
#include<deque>
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
#define fi first
#define se second
#define pb push_back
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define endl '\n'
#define eps 1e-6
#define mem(n,a) memset(n,a,sizeof(n))
#define rep(i,be,en) for(int i=be;i<=en;++i)
#define pre(i,be,en) for(int i=en;i>=be;--i)
inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
inline int lowbit(int x) { return x & -x; }


using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 100100;

int n,m, p;
int w[N];

struct node {
	int l, r;
	LL sum, add, mul;
}tr[4 * N];

void pushup(int u) {
	tr[u].sum = LL(tr[u << 1].sum + tr[u << 1 | 1].sum) % p;
}

void eval(node& t, int add, int mul) {
	t.sum = ((LL)t.sum * mul + (LL)(t.r - t.l + 1) * add) % p;
	t.mul = (LL)t.mul * mul % p;
	t.add = ((LL)t.add * mul + add) % p;
}

void pushdown(int u) {
	eval(tr[u << 1], tr[u].add, tr[u].mul);
	eval(tr[u << 1 | 1], tr[u].add, tr[u].mul);
	tr[u].add = 0;
	tr[u].mul = 1;
}

void build(int u, int l, int r) {
	if (l == r) {
		tr[u] = { r,r,w[r],0,1 };
	}
	else {
		tr[u] = { l,r,0,0,1 };
		int mid = l + r >> 1;
		build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
		pushup(u);
	}
}

void modify(int u, int l, int r, int add, int mul) {
	if (tr[u].l >= l && tr[u].r <= r)eval(tr[u], add, mul);
	else {
		pushdown(u);
		int mid = tr[u].l + tr[u].r >> 1;
		if (l <= mid)modify(u << 1, l, r, add, mul);
		if (r > mid)modify(u << 1 | 1, l, r, add, mul);
		pushup(u);
	}
}

int query(int u, int l, int r) {
	if (tr[u].l >= l && tr[u].r <= r)return tr[u].sum % p;
	else {
		pushdown(u);
		int mid = tr[u].l + tr[u].r >> 1;
		LL sum = 0;
		if (l <= mid)sum = query(u << 1, l, r);
		if (r > mid)sum = (sum + query(u << 1 | 1, l, r)) % p;
		return sum;
	}
}
int main() {
	cin >> n >> p;
	for (int i = 1;i <= n;++i)scanf("%d", &w[i]);

	build(1, 1, n);
	cin >> m;
	int t, l, r, d;
	while (m--) {
		scanf("%d%d%d", &t, &l, &r);
		if (t == 1) {
			scanf("%d", &d);
			modify(1, l, r, 0, d);
		}
		else if (t == 2) {
			scanf("%d", &d);
			modify(1, l, r, d, 1);
		}
		else {
			printf("%d\n", query(1, l, r));
		}
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值