AcWing1277. 维护序列
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。
有长为 NN 的数列,不妨设为 a1,a2,…,aN
有如下三种操作形式:
- 把数列中的一段数全部乘一个值;
- 把数列中的一段数全部加一个值;
- 询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模 P 的值。
输入格式
第一行两个整数 N 和 P;
第二行含有 N 个非负整数,从左到右依次为 a 1 , a 2 , … , a N a_1,a_2,…,a_N a1,a2,…,aN
第三行有一个整数 M,表示操作总数;
从第四行开始每行描述一个操作,输入的操作有以下三种形式:
- 操作 11:
1 t g c
,表示把所有满足 t ≤ i ≤ g t≤i≤g t≤i≤g 的 a i a_i ai 改为 a i × c a_i×c ai×c - 操作 22:
2 t g c
,表示把所有满足 t ≤ i ≤ g t≤i≤g t≤i≤g 的 a i a_i ai 改为 a i + c a_i+c ai+c - 操作 33:
3 t g
,询问所有满足 t ≤ i ≤ g t≤i≤g t≤i≤g 的 a i a_i ai 的和模 P P P 的值。
同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
输出格式
对每个操作 3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
数据范围
1
≤
N
,
M
≤
1
0
5
1≤N,M≤10^{5}
1≤N,M≤105
1
≤
t
≤
g
≤
N
1≤t≤g≤N
1≤t≤g≤N,
0
≤
c
,
a
i
≤
1
0
9
0≤c,ai≤10^{9}
0≤c,ai≤109,
1
≤
P
≤
1
0
9
1≤P≤10^{9}
1≤P≤109
代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<string>
#include<cstring>
#include<map>
#include<vector>
#include<set>
#include<stack>
#include<cmath>
#include<algorithm>
#include<vector>
#include<utility>
#include<deque>
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
#define fi first
#define se second
#define pb push_back
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define endl '\n'
#define eps 1e-6
#define mem(n,a) memset(n,a,sizeof(n))
#define rep(i,be,en) for(int i=be;i<=en;++i)
#define pre(i,be,en) for(int i=en;i>=be;--i)
inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
inline int lowbit(int x) { return x & -x; }
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 100100;
int n,m, p;
int w[N];
struct node {
int l, r;
LL sum, add, mul;
}tr[4 * N];
void pushup(int u) {
tr[u].sum = LL(tr[u << 1].sum + tr[u << 1 | 1].sum) % p;
}
void eval(node& t, int add, int mul) {
t.sum = ((LL)t.sum * mul + (LL)(t.r - t.l + 1) * add) % p;
t.mul = (LL)t.mul * mul % p;
t.add = ((LL)t.add * mul + add) % p;
}
void pushdown(int u) {
eval(tr[u << 1], tr[u].add, tr[u].mul);
eval(tr[u << 1 | 1], tr[u].add, tr[u].mul);
tr[u].add = 0;
tr[u].mul = 1;
}
void build(int u, int l, int r) {
if (l == r) {
tr[u] = { r,r,w[r],0,1 };
}
else {
tr[u] = { l,r,0,0,1 };
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int l, int r, int add, int mul) {
if (tr[u].l >= l && tr[u].r <= r)eval(tr[u], add, mul);
else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid)modify(u << 1, l, r, add, mul);
if (r > mid)modify(u << 1 | 1, l, r, add, mul);
pushup(u);
}
}
int query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r)return tr[u].sum % p;
else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if (l <= mid)sum = query(u << 1, l, r);
if (r > mid)sum = (sum + query(u << 1 | 1, l, r)) % p;
return sum;
}
}
int main() {
cin >> n >> p;
for (int i = 1;i <= n;++i)scanf("%d", &w[i]);
build(1, 1, n);
cin >> m;
int t, l, r, d;
while (m--) {
scanf("%d%d%d", &t, &l, &r);
if (t == 1) {
scanf("%d", &d);
modify(1, l, r, 0, d);
}
else if (t == 2) {
scanf("%d", &d);
modify(1, l, r, d, 1);
}
else {
printf("%d\n", query(1, l, r));
}
}
return 0;
}