AcWing 125. 耍杂技的牛 (推公式)

AcWing 125. 耍杂技的牛

农民约翰的N头奶牛(编号为 1.. N 1..N 1..N)计划逃跑并加入马戏团,为此它们决定练习表演杂技。

奶牛们不是非常有创意,只提出了一个杂技表演:

叠罗汉,表演时,奶牛们站在彼此的身上,形成一个高高的垂直堆叠。

奶牛们正在试图找到自己在这个堆叠中应该所处的位置顺序。

这N头奶牛中的每一头都有着自己的重量 w i w_{i} wi以及自己的强壮程度 s i s_{i} si

一头牛支撑不住的可能性取决于它头上所有牛的总重量(不包括它自己)减去它的身体强壮程度的值,现在称该数值为风险值,风险值越大,这只牛撑不住的可能性越高。

您的任务是确定奶牛的排序,使得所有奶牛的风险值中的最大值尽可能的小。

输入格式

第一行输入整数N,表示奶牛数量。

接下来N行,每行输入两个整数,表示牛的重量和强壮程度,第i行表示第i头牛的重量 w i w_{i} wi以及它的强壮程度 s i s_{i} si

输出格式

输出一个整数,表示最大风险值的最小可能值。

思路

按照 s [ i ] + w [ i ] s[i] + w[i] s[i]+w[i]从小到大排序 求最大值

设按照上述规则求得的答案为可行解 c n t cnt cnt 最优解为 a n s ans ans

∴ \therefore a n s ≤ c n t ans \leq cnt anscnt

反证法:假设 s i + w i > s i + 1 + w i + 1 s_{i} + w_{i} > s_{i+1}+w_{i+1} si+wi>si+1+wi+1

​ 第 i i i层                                                                                  $ 第 第 i+1$层

​ 交换前: w 1 + w 2 + ⋯ + w i − 1 − s i w_{1} + w_{2} + \dots+w_{i-1} - s_{i} w1+w2++wi1si               w 1 + w 2 + ⋯ + w i − s i + 1 w_{1} + w_{2} + \dots +w_{i} - s_{i+1} w1+w2++wisi+1

​ 交换后: w 1 + w 2 + ⋯ + w i − 1 − s i + 1 w_{1} + w_{2} + \dots+w_{i-1} - s_{i + 1} w1+w2++wi1si+1          w 1 + w 2 + ⋯ + w i − 1 + w i + 1 − s i w_{1} + w_{2} + \dots+w_{i - 1} + w_{i+1} - s_{i} w1+w2++wi1+wi+1si

化简:
              交换前: − s i - s_{i} si w i − s i + 1 w_{i} - s_{i + 1} wisi+1

​              交换后: − s i + 1 -s_{i+1} si+1 w i + 1 − s i w_{i + 1} - s_{i} wi+1si

同时加上 s i + s i + 1 s_{i} + s_{i + 1} si+si+1 :

​              交换前: s i + 1 s_{i + 1} si+1 w i + s i w_{i} + s_{i} wi+si

​              交换后: s i s_{i} si w i + 1 + s i + 1 w_{i + 1} + s_{i + 1} wi+1+si+1

∵ \because s i < w i + s i s_{i} < w_{i} + s_{i} si<wi+si 并且已知 w i + 1 + s i + 1 < w i + w i w_{i + 1} + s_{i + 1} < w_{i} + w_{i} wi+1+si+1<wi+wi

∴ \therefore m a x ( s i , w i + 1 + s i + 1 ) ≤ w i + s i max(s_{i},w_{i + 1} + s_{i + 1}) \leq w_{i} + s_{i} max(si,wi+1+si+1)wi+si

∴ m a x ( s i , w i + 1 + s i + 1 ) ≤ m a x ( w i + s i , s i + 1 ) \therefore max(s_{i},w_{i + 1} + s_{i + 1}) \leq max(w_{i} + s_{i},s_{i + 1}) max(si,wi+1+si+1)max(wi+si,si+1)

∴ \therefore 交换后最大风险值的最小可能指变小了 说明原思路正确

代码

#include<bits/stdc++.h>

using namespace std;
const int N = 50010;
int n;
struct Node {
	int s, w;
}node[N];

bool cmp(Node a, Node b) {
	return a.s + a.w < b.s + b.w;
}
int main() {
	scanf("%d", &n);

	for (int i = 0; i < n; ++i) {
		scanf("%d%d", &node[i].w, &node[i].s);
	}
	sort(node, node + n, cmp);
	LL sum = 0, res = -2e9;
	for (int i = 0; i < n; ++i) {
		res = max(res, sum - node[i].s);
		sum += node[i].w;
	}

	printf("%lld\n", res);

	return 0;
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页