AcWing 532. 货币系统 (完全背包求方案数 变形)

题意

在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。

为了方便,我们把货币种数为 n、面额数组为 a[1…n]的货币系统记作 (n,a)。

在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。

然而,在网友的国度中,货币系统可能是不完善的,即可能存在金额 x 不能被该货币系统表示出。

例如在货币系统 n=3, a=[2,5,9] 中,金额 1,3 就无法被表示出来。

两个货币系统 (n,a) 和 (m,b) 是等价的,当且仅当对于任意非负整数 x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。

他们希望找到一个货币系统 (m,b),满足 (m,b) 与原来的货币系统 (n,a) 等价,且 m 尽可能的小。

他们希望你来协助完成这个艰巨的任务:找到最小的 m。

思路

由题目可以得到

①:a 中的每一个面值都可以由 b 表示

②:b 中的每一个面值也都可以用 a 表示

只有这样才能满足题目给的条件 “当且仅当对于任意非负整数 x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出”

由上面两个条件我们还可以得出

③:b 中的元素一定在 a 中

证明:假设 b 中有一个元素 b i b_i bi 不在 a 中 由①得 b i b_i bi 可以被 a 表示 那么不妨设 b i b_i bi = j ∗ a j j*a_j jaj + k ∗ a k k*a_k kak (1)

又因为 a 可以被 b 表示 所以上式可以写成 b i b_i bi = j ( b 1 + b 2 . . . + b j ) + k ( b 1 . . . + b k ) j(b_1+b_2...+b_j) + k(b_1...+b_k) j(b1+b2...+bj)+k(b1...+bk) (2)

b j b_j bj 可以由 b 中的其他元素表示 不满足题目要求的 b最小 所以 任意 b i b_i bi 一定在 a 中

由(1) (2) 我们又可以得到

④: b i b_i bi 不能被 b 中其他的元素表示

因为 b i b_i bi 只有可能被比它小的元素表示 也即 b i b_i bi 不能被 b 1 , b 2 , . . . b i − 1 b_1,b_2,...b_i - 1 b1,b2,...bi1 表示

所以我们对 b 从小到大排序 求出用当前的面值可以表示出哪些金额 再判断 b i b_i bi 是否能被它之前的元素表示即可

如果 b i b_i bi 能被之前的元素表示 那么可以把 b j b_j bj 从 b 中去掉 否则 r e s + + res++ res++

代码

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 998244353
#define endl '\n'
#define int long long
using namespace std;
inline int gcd(int a, int b) { return b ? gcd(b, a%b) : a; }
inline int lowbit(int x) { return x & -x; }


typedef long long LL;
typedef pair<int, int>PII;
const int N = 25010;


int n;
int a[200];
int f[N];

void solve() {
	cin >> n;
	for (int i = 1; i <= n; ++i)scanf("%lld", &a[i]);
	sort(a + 1, a + 1 + n);

	int m = a[n];

	memset(f, 0, sizeof f);
	f[0] = 1;
	int res = 0;
	for (int i = 1; i <= n; ++i) {
		if (!f[a[i]])res++;
		for (int j = a[i]; j <= m; ++j)
			f[j] += f[j - a[i]];
	}
	cout << res << endl;
}


signed main() {
	int t; cin >> t;
	while(t--)
		solve();

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值