单层感知器介绍

在这里插入图片描述
输入节点:x1,x2,x3
输出节点:y
权向量:w1,w2,w3
偏置因子:b
激活函数:sign(x) {y=1,x>=0;y=-1,x<0}
举例
b=-0.6
w1=w2=w3=0.5
在这里插入图片描述
单层感知器的另一种结构
在这里插入图片描述
在这里插入图片描述
学习率η:一般在0到1之间,学习率太大容易造成权值调整不稳定,学习率太小,权值调整太慢,迭代次数过多
在这里插入图片描述
模型收敛条件:

  1. 误差小于某个事先设定的较小的值
  2. 两次迭代的权值变化很小
  3. 设定最大迭代数,当超过最大迭代数时自动停止
    附一个简单的示例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([[1, 3, 3],
            [1, 4, 3],
            [1, 1, 1],
            [1, 2, 1]])
T = np.array([[1],
            [1],
            [-1],
            [-1]])
w = np.random.random([3, 1])
ir = 0.1
Y = 0
def train():
    global x, Y, w, ir, T
    Y = np.sign(np.dot(x, w))
    E = T-Y
    delta_w = ir*(x.T.dot(E))/x.shape[0]
    w = w + delta_w
for i in range(100):
    train()
    print('epoch', i+1)
    print('wights', w)
    Y = np.sign(np.dot(x, w))
    if (Y == T).all():
        print("finished")
        break
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值