输入节点:x1,x2,x3
输出节点:y
权向量:w1,w2,w3
偏置因子:b
激活函数:sign(x) {y=1,x>=0;y=-1,x<0}
举例
b=-0.6
w1=w2=w3=0.5
单层感知器的另一种结构
学习率η:一般在0到1之间,学习率太大容易造成权值调整不稳定,学习率太小,权值调整太慢,迭代次数过多
模型收敛条件:
- 误差小于某个事先设定的较小的值
- 两次迭代的权值变化很小
- 设定最大迭代数,当超过最大迭代数时自动停止
附一个简单的示例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([[1, 3, 3],
[1, 4, 3],
[1, 1, 1],
[1, 2, 1]])
T = np.array([[1],
[1],
[-1],
[-1]])
w = np.random.random([3, 1])
ir = 0.1
Y = 0
def train():
global x, Y, w, ir, T
Y = np.sign(np.dot(x, w))
E = T-Y
delta_w = ir*(x.T.dot(E))/x.shape[0]
w = w + delta_w
for i in range(100):
train()
print('epoch', i+1)
print('wights', w)
Y = np.sign(np.dot(x, w))
if (Y == T).all():
print("finished")
break