论文名称: TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios
论文下载地址:https://arxiv.org/abs/2108.11539
代码运行参考博客:https://blog.csdn.net/zztjl/article/details/123870061添加链接描述
一、摘要
概述了模型解决的问题域,以及tph-yolov5主要模块。
问题域:主要针对无人机图像检测。无人机拍摄图像相比一般目标检测图像的检测难点有:
- 飞行高度变化导致目标尺度变化剧烈,增加模型负担
- 快速低空飞行造成密集目标区域的运动模糊,给目标区分带来挑战。
模型:本文模型在yolov5的基础上,提出了不同的模块以解决上述问题。
- 增加了一个预测头检测不同尺度的目标
- 使用TPH(Transformer Prediction Heads)代替原始预测头,开发自注意力机制的预测潜力(这里后面可以再看看,还是有点不明白)
- 使用CBAM(Convolutional block attention model)发现密集目标的注意区域
- 采用了一系列tricks:数据增强、多尺度测试、多模型融合、