题目描述
这次小可可想解决的难题和中国象棋有关,在一个 nn 行 mm 列的棋盘上,让你放若干个炮(可以是 00 个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入格式
一行包含两个整数 n,mn,m,之间由一个空格隔开。
输出格式
总共的方案数,由于该值可能很大,只需给出方案数模 99999739999973 的结果。
输入输出
输入 #1
1 3
输出 #1
7
在这道题目中,重要的不是每行中每个炮的具体位置在哪,而是一列中有多少个炮,否则记录每行状态太麻烦了。
定义
f[i][j][k] 表示前i行中有j列含有1个炮,k列含有2个炮, 那么其实含有0个炮就是(m-j-k)列。
转移
分为3种情况
①第i行放0个,即f[i][j][k]+=f[i-1][j][k]
②第i行放1个,可以放在之前没有炮或者有一个炮的列,还要再乘上炮的个数,即
f[i][j][k]+=f[i-1][j-1][k]*(m-(j-1)-k)+f[i-1][j+1][k-1]*(j+1)
③第i行放2个,可以两个都放在之前没有炮的,可以两个都放在之前有一个炮的,也可以各放一个
f[i][j][k]+=f[i-1][j-2][k]*(m-(j-2)-k)*(m-(j-2)-k-1)/2+f[i-1][j+2][k-2]*(j+2)*(j+1)/2+f[i-1][j][k-1]*j*(m-(j-1)-k)
结果
max{f[n][i][j],0≤i≤m,0≤j≤m}
别忘了判范围!!上代码
#include<bits/stdc++.h>
using namespace std;
const long long MOD=9999973;
long long f[110][110][110];
int main()
{
int n,m;
scanf("%d %d",&n, &m);
f[0][0][0]=1;
for(int i=1;i<=n;++i)
{
for(int j=0;j<=m;++j)
{
for(int k=0;k<=m;++k)
{
long long r=0;
r+=f[i-1][j][k];
if(j-1>=0) r+=f[i-1][j-1][k]*(m-j+1-k)%MOD;//别忘了判范围
if(k-1>=0) r+=f[i-1][j+1][k-1]*(j+1)%MOD;
if(j-2>=0) r+=f[i-1][j-2][k]*(m-j-k+2)*(m-j-k+1)/2%MOD;
if(k-2>=0) r+=f[i-1][j+2][k-2]*(j+2)*(j+1)/2%MOD;
if(k-1>=0) r+=f[i-1][j][k-1]*j*(m-j-k+1)%MOD;
f[i][j][k]+=r;
f[i][j][k]%=MOD;
}
}
}
long long ans=0;
for(int i=0;i<=m;++i)
{
for(int j=0;j<=m;++j)
{
(ans+=f[n][i][j])%=MOD;
}
}
printf("%lld",(ans+MOD)%MOD);
return 0;
}