1759:最长上升子序列
描述
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4
思路:dp
1.确定子问题,大问题是n个数的序列,找不到最大长度的上升子序列
可以转换为,以每个点为终点的上升序列,然后选择其中最长的
2.状态,i,数组下标,每个数当做终点
3边界状态,第一个数字当终点,最长上升序列就是1
4.状态转移方程:
maxlen(i)=1 ,i=1
maxlen(i)=Max( a[ j ]<a[ i ] , j从1到i-1,max(j))+1;
i的左边的数a[1…i-1]其中小于a[i]的,选择以a[1…i-1]为终点中,maxLen最大的,然后再+1
#include<iostream>
#include<algorithm>
using namespace std;
int N;
int a[1050];
int maxLen[1050];
int main()
{
cin >> N;
for (int i = 1; i <= N; i++)
{
cin >> a[i];
maxLen[i] = 1;
}
for (int i = 2; i <= N; i++)
{
for (int j = 1; j < i; j++)
if (a[i]>a[j])
maxLen[i] = max(maxLen[i], maxLen[j] + 1);
}
int res = maxLen[1];
for (int i = 2; i <= N; i++)
{
res = max(maxLen[i], res);
}
cout << res;
return 0;
}