动态规划,最大上升子序列

1759:最长上升子序列

描述
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入

7
1 7 3 5 9 4 8

样例输出

4

思路:dp
1.确定子问题,大问题是n个数的序列,找不到最大长度的上升子序列
可以转换为,以每个点为终点的上升序列,然后选择其中最长的
2.状态,i,数组下标,每个数当做终点
3边界状态,第一个数字当终点,最长上升序列就是1
4.状态转移方程:
maxlen(i)=1 ,i=1
maxlen(i)=Max( a[ j ]<a[ i ] , j从1到i-1,max(j))+1;
i的左边的数a[1…i-1]其中小于a[i]的,选择以a[1…i-1]为终点中,maxLen最大的,然后再+1

#include<iostream>
#include<algorithm>
using namespace std;

int N;
int a[1050];
int maxLen[1050];
int main()
{
	cin >> N;
	for (int i = 1; i <= N; i++)
	{
		cin >> a[i];
		maxLen[i] = 1;
	}
	for (int i = 2; i <= N; i++)
	{
		for (int j = 1; j < i; j++)
			if (a[i]>a[j])
				maxLen[i] = max(maxLen[i], maxLen[j] + 1);
	}
	int res = maxLen[1];
	for (int i = 2; i <= N; i++)
	{
		res = max(maxLen[i], res);
	}
	cout << res;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值