Merge k Sorted Lists



Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity

1.非递归归并

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *mergeKLists(vector<ListNode *> &lists) {
         int len = lists.size();
         if(len <=0 )return NULL;
         int step = 1;
         ListNode *head=lists[0];
         while(step < len){
             int first = 0;
             int second = first+step;
             while(first < len){
                 ListNode *h1 = lists[first];
                 ListNode *h2 = lists[second];
                 head=merge(h1,h2);
                 lists[first] = head;
                 if(first!=second)
                    lists[second] = NULL;      
                 first = second + step;
                 second = first +step;
                 second = second >= len ? len-1:second;
             }
             step *= 2;
         }
         return head;
    }
private:
   ListNode *merge(ListNode *h1,ListNode *h2){
       if(h1==h2) return h1;
       if(h1==NULL) return h2;
       if(h2==NULL) return h1;
       ListNode *pre1=NULL,*head = h1;
       while(h1 && h2){
           if(h1->val < h2->val) {
               pre1 = h1;
               h1=h1->next;
           }else if(h1->val ==h2->val){
               ListNode *p = h2->next;
               h2->next = h1->next ;
               h1->next = h2;
               pre1=h1;
               h1 = h2;
               h2=p;
           }else{
               ListNode *p = h2->next;
               if(pre1==NULL){
                   h2->next = h1;
                   head = h2;
                   pre1 = h2;
                   
               }else{
                   h2->next = pre1->next;
                   pre1->next = h2;
                   pre1=h2;
               }
               h2=p;
           }
       }
       if(h2){
           pre1->next = h2;
       }
       return head;
   }
};


2.递归:

class Solution {
public:
    ListNode *mergeKLists(vector<ListNode *> &lists) {
        return mergeKLists(lists,0,lists.size());
    }
private:
    ListNode *mergeKLists(vector<ListNode *> &lists,int low,int high) {
        if(low >= high || lists.size()==0) return NULL;
        if(high-low==1) return lists[low];
        int middle = (low+high)/2;
        ListNode *h1=mergeKLists(lists,low,middle);
        lists[low]=h1;
        ListNode *h2=mergeKLists(lists,middle,high);
        lists[middle]=h2;
        ListNode *head = merge(h1,h2);
        lists[low]=head;
        return head;
    }
    ListNode *merge(ListNode *h1,ListNode *h2){
       if(h1==h2) return h1;
       if(h1==NULL) return h2;
       if(h2==NULL) return h1;
       ListNode *pre1=NULL,*head = h1;
       while(h1 && h2){
           if(h1->val < h2->val) {
               pre1 = h1;
               h1=h1->next;
           }else if(h1->val ==h2->val){
               ListNode *p = h2->next;
               h2->next = h1->next ;
               h1->next = h2;
               pre1=h1;
               h1 = h2;
               h2=p;
           }else{
               ListNode *p = h2->next;
               if(pre1==NULL){
                   h2->next = h1;
                   head = h2;
                   pre1 = h2;
                   
               }else{
                   h2->next = pre1->next;
                   pre1->next = h2;
                   pre1=h2;
               }
               h2=p;
           }
       }
       if(h2){
           pre1->next = h2;
       }
       return head;
   }
};


To merge k sorted linked lists, one approach is to repeatedly merge two of the linked lists until all k lists have been merged into one. We can use a priority queue to keep track of the minimum element across all k linked lists at any given time. Here's the code to implement this idea: ``` struct ListNode { int val; ListNode* next; ListNode(int x) : val(x), next(NULL) {} }; // Custom comparator for the priority queue struct CompareNode { bool operator()(const ListNode* node1, const ListNode* node2) const { return node1->val > node2->val; } }; ListNode* mergeKLists(vector<ListNode*>& lists) { priority_queue<ListNode*, vector<ListNode*>, CompareNode> pq; for (ListNode* list : lists) { if (list) { pq.push(list); } } ListNode* dummy = new ListNode(-1); ListNode* curr = dummy; while (!pq.empty()) { ListNode* node = pq.top(); pq.pop(); curr->next = node; curr = curr->next; if (node->next) { pq.push(node->next); } } return dummy->next; } ``` We start by initializing a priority queue with all the head nodes of the k linked lists. We use a custom comparator that compares the values of two nodes and returns true if the first node's value is less than the second node's value. We then create a dummy node to serve as the head of the merged linked list, and a current node to keep track of the last node in the merged linked list. We repeatedly pop the minimum node from the priority queue and append it to the merged linked list. If the popped node has a next node, we push it onto the priority queue. Once the priority queue is empty, we return the head of the merged linked list. Note that this implementation has a time complexity of O(n log k), where n is the total number of nodes across all k linked lists, and a space complexity of O(k).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值