- 博客(37)
- 收藏
- 关注
原创 CCF-CSP认证 2023年3月01 田地丈量
(p1.x > p4.x) || (p2.x < p3.x) || (p1.y > p4.y) || (p2.y < p3.y) //对矩阵不重叠求反。p1与p2表示矩形A的左下角和右上角,用p3和p4表示矩形B的左下角和右上角。
2024-06-01 09:39:05
453
原创 CCF-CSP认证 2024年3月 4.十滴水
但要注意处理边界值,在处理过程中始终保证左右端点不越界,优先处理左边的水滴即可完成题目中的在有多个水滴要爆时先处理左边。
2024-05-21 21:53:12
811
原创 CCF-CSP认证 2024年3月 2.相似度计算
这里要注意加inserter可能是新加的C++特性,最后一个参数写re.begin会报错。其中有5个参数:firts1,last1,first2,last2,result。需要注意的是,所求的两个集合必须是有序的,不然运行时会出现错误。这里用一下 set_intersaction()函数来计算交集。并且使用字符串hash加快处理速度。set_union同理。
2024-05-20 21:06:24
972
原创 【十分钟速成系列】--多目标优化(MOO)
单目标优化的情况下,只有一个目标,任何两解都可以依据单一目标比较其好坏,可以得出没有争议的最优解。多目标化与传统的单目标优化相对。多目标优化的概念是在某个情景中在需要达到多个目标时,由于容易存在目标间的内在冲突,一个目标的优化是以其他目标劣化为代价,因此很难出现唯一最优解,取而代之的是在他们中间做出协调和折中处理,使总体的目标尽可能的达到最优。在MOO问题中,解集可以通过最优解,有效解和弱有效解表示。首先我们先定义多目标里面的相等、严格小于、小于、小于且不相等:定义:∀x1,x2∈RN\forall
2024-01-28 18:33:10
6969
1
原创 【十分钟速成系列】--遗传算法(GA)(含py代码)
目录1.算法前瞻:1.1 基因和染色体: 1.2 种群和个体1.3 适应度函数1.4交叉轮盘赌法:单点交叉多点交叉 1.5变异2.算法步骤2.1编码和解码二进制编码:二进制解码:2.2 初始化种群2.3 适应度和选择2.4 交叉和变异2.5 算法终止 2.6 算法流程图3.应用场景 4.遗传算法的基本特征5.代码实现 遗传算法简称GA(Genetic Algorithms)模拟自然界生物遗传学(孟德尔)和生物进化论(达尔文)通过人工方式所构造的一类 并行随机搜索最优化方法,是
2024-01-23 19:02:15
1907
原创 【十分钟速成系列】--模拟退火算法(SA)(内含代码)
下图中所示即为在一次温度下,跌代L次,固体能量发生的变化。在该温度下,整个迭代过程中温度不发生变化,能量发生变化,当前一个状态x(n)的能量大于后一个状态x(n+1)的能量时,状态x(n)的解没有状态x(n+1)的解好,所以接受状态x(n+1)。假设开始状态在A,多次迭代之后更新到B的局部最优解,这时发现更新到B时,能力比A要低,则说明接近最优解了,因此百分百转移,状态到达B后,发现下一步能量上升了,如果是梯度下降则是不允许继续向前的,而这里会以一定的概率跳出这个坑,这各概率和当前的状态、能量等都有关系。
2024-01-22 15:37:57
4919
原创 计算机组成原理--透明与不透明寄存器
(指令寄存器是从主存中取出来存放指令的寄存器,无法编辑,自然也不可见)uIR(微指令寄存器,uMAR,uMDR)变址寄存器(变址寻址,如数组的访问需要)中断字寄存器(可以修改中断的优先级)PC,PSW,通用寄存器,ACC。MAR(存储器地址寄存器)MDR(存储器数据寄存器)基址寄存器(基址寻址)Cache(高速缓存)
2023-12-30 09:28:35
1093
1
原创 数据预处理----白化(Whitening)
我对【零相位】的理解就是,相对于原来的空间(坐标系),白化后的数据并没有发生旋转(坐标变换)。ZCA白化则是在PCA白化基础上,将PCA白化后的数据旋转回到原来的特征空间,这样可以使得变换后的数据更加接近原始输入数据。那么我们要怎样旋转才能得到不想关的数据呢,实际上,在协方差矩阵中,其特征向量指示的就是数据扩散的最大方向。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。即原始数据存在一定的相关性,我们想要旋转数据以使得数据不在存在相关性。
2023-12-01 11:27:13
3425
1
原创 BN层详解
在深度神经网络中,如果网络的激活输出很大,其对应的梯度就会很小,导致网络的学习速率就会很慢,假设网络中每层的学习梯度都小于最大值0.25,网络中有n层,因为链式求导的原因,第一层的梯度将会小于0.25的n次方,所以学习速率相对来说会变的很慢,而对于网络的最后一层只需要对自身求导一次,梯度就大,学习速率就会比较快,这就会造成在一个很深的网络中,浅层基本不学习,权值变化小,而后面几层网络一直学习,后面的网络基本可以表征整个网络,这样失去了深度的意义。但是如果简单的这么干,会降低层的表达能力。
2023-11-30 19:39:36
968
原创 转置卷积(反卷积)--深度理解
下图以stride=1,padding=1,kernel_size=3为例,假设输入特征图大小是4x4的(假设输入输出都是单通道),通过卷积后得到的特征图大小为2x2。一般使用卷积的情况中,要么特征图变小(stride > 1),要么保持不变(stride = 1),通常,对图像进行多次卷积运算后,特征图的尺寸会不断缩小。普通的卷积操作可以说是很简单,就是卷积核大小的窗口在原始输入图像的一步步挪动,通过加权计算得到结果。简单来说,对于同一个卷积核,经过转置卷积操作之后并不能恢复到原始的数值,保留的只有。
2023-11-29 22:07:56
745
1
原创 残差网络--Resnet
ResNet论文直达Resnet 分为 Res 和 Net 来理解,Res 指的是残差结构Residual。Net 当然就是神经网络的意思.
2023-11-28 20:38:36
100
原创 模型量化--超详细解惑
量化就是把高位宽(Float32)表示的权值或者激活值用较低位宽来近似表示(INT8, INT4,……),在数值上的体现就是将连续的值离散化。即原来表示一个权重需要使用float32表示,量化后只需要使用int8位。
2023-11-26 22:01:07
1188
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人