CCF-CSP认证 2023年3月01 田地丈量 (p1.x > p4.x) || (p2.x < p3.x) || (p1.y > p4.y) || (p2.y < p3.y) //对矩阵不重叠求反。p1与p2表示矩形A的左下角和右上角,用p3和p4表示矩形B的左下角和右上角。
CCF-CSP认证 2024年3月 2.相似度计算 这里要注意加inserter可能是新加的C++特性,最后一个参数写re.begin会报错。其中有5个参数:firts1,last1,first2,last2,result。需要注意的是,所求的两个集合必须是有序的,不然运行时会出现错误。这里用一下 set_intersaction()函数来计算交集。并且使用字符串hash加快处理速度。set_union同理。
【十分钟速成系列】--多目标优化(MOO) 单目标优化的情况下,只有一个目标,任何两解都可以依据单一目标比较其好坏,可以得出没有争议的最优解。多目标化与传统的单目标优化相对。多目标优化的概念是在某个情景中在需要达到多个目标时,由于容易存在目标间的内在冲突,一个目标的优化是以其他目标劣化为代价,因此很难出现唯一最优解,取而代之的是在他们中间做出协调和折中处理,使总体的目标尽可能的达到最优。在MOO问题中,解集可以通过最优解,有效解和弱有效解表示。首先我们先定义多目标里面的相等、严格小于、小于、小于且不相等:定义:∀x1,x2∈RN\forall
【十分钟速成系列】--遗传算法(GA)(含py代码) 目录1.算法前瞻:1.1 基因和染色体: 1.2 种群和个体1.3 适应度函数1.4交叉轮盘赌法:单点交叉多点交叉 1.5变异2.算法步骤2.1编码和解码二进制编码:二进制解码:2.2 初始化种群2.3 适应度和选择2.4 交叉和变异2.5 算法终止 2.6 算法流程图3.应用场景 4.遗传算法的基本特征5.代码实现 遗传算法简称GA(Genetic Algorithms)模拟自然界生物遗传学(孟德尔)和生物进化论(达尔文)通过人工方式所构造的一类 并行随机搜索最优化方法,是
【十分钟速成系列】--模拟退火算法(SA)(内含代码) 下图中所示即为在一次温度下,跌代L次,固体能量发生的变化。在该温度下,整个迭代过程中温度不发生变化,能量发生变化,当前一个状态x(n)的能量大于后一个状态x(n+1)的能量时,状态x(n)的解没有状态x(n+1)的解好,所以接受状态x(n+1)。假设开始状态在A,多次迭代之后更新到B的局部最优解,这时发现更新到B时,能力比A要低,则说明接近最优解了,因此百分百转移,状态到达B后,发现下一步能量上升了,如果是梯度下降则是不允许继续向前的,而这里会以一定的概率跳出这个坑,这各概率和当前的状态、能量等都有关系。
计算机组成原理--透明与不透明寄存器 (指令寄存器是从主存中取出来存放指令的寄存器,无法编辑,自然也不可见)uIR(微指令寄存器,uMAR,uMDR)变址寄存器(变址寻址,如数组的访问需要)中断字寄存器(可以修改中断的优先级)PC,PSW,通用寄存器,ACC。MAR(存储器地址寄存器)MDR(存储器数据寄存器)基址寄存器(基址寻址)Cache(高速缓存)