题目描述:
给你一个整数数组 nums
。每一次操作中,你可以将 nums
中 任意 一个元素替换成 任意 整数。
如果 nums
满足以下条件,那么它是 连续的 :
nums
中所有元素都是 互不相同 的。nums
中 最大 元素与 最小 元素的差等于nums.length - 1
。
比方说,nums = [4, 2, 5, 3]
是 连续的 ,但是 nums = [1, 2, 3, 5, 6]
不是连续的 。
请你返回使 nums
连续 的 最少 操作次数。
示例 1:
输入:nums = [4,2,5,3] 输出:0 解释:nums 已经是连续的了。
示例 2:
输入:nums = [1,2,3,5,6] 输出:1 解释:一个可能的解是将最后一个元素变为 4 。 结果数组为 [1,2,3,5,4] ,是连续数组。
示例 3:
输入:nums = [1,10,100,1000] 输出:3 解释:一个可能的解是: - 将第二个元素变为 2 。 - 将第三个元素变为 3 。 - 将第四个元素变为 4 。 结果数组为 [1,2,3,4] ,是连续数组。
方法一:去重 + 排序 + 滑动窗口
其题干中说到最大元素与最小元素之间的差为nums.length - 1
,于是我们可以以此为突破口,将数组排序并去重,而后以最小值为左边界,以最大值为右边界。如果数组内的数不在此区间或者在区间内但是重复,则需要进行操作。由此,我们将题目转为求数组长度减去区间内不同数字个数的最小值。接下来只需要确定左边界,也就是起点位置即可,这样的话,我们可以先将原数字进行去重后排序,然后利用滑动窗口。滑动窗口左端点的值作为 起点,然后向右扩展右端点,窗口的长度即为 范围。
static int cmp(const void *a, const void *b) {
return *(int *)a - *(int *)b;
}
//由题干可知最大元素与最小元素之差为num。length - 1,则只需将数组进行排序去重,而后因为范围固定我们只需找到
//包含不同元素最多的时候的起点(最小值),就得到想要的结果;
int minOperations(int* nums, int numsSize) {
qsort(nums, numsSize, sizeof(int), cmp);//排序函数,
//其参数分别为目标数组,数组元素个数,每个元素大小,排序规则
int res[numsSize];//设立一个数组用于存去重之后的数据
int number=1;
res[0] = nums[0];
for(int i = 1;i < numsSize;i++)//去重操作
{
if(nums[i] != nums[i-1])
{
res[number++]=nums[i];
}
}
//正式开始查找最有起点
int min = numsSize,j=0;
for(int i = 0;i < number;i++)//从左到右遍历数组
{
while(j < number && res[j] <= res[i]+numsSize-1)//对比每个起点的最小值
{
min = fmin(min,numsSize-(j-i+1));
j++;
}
}
return min;
}