手术的最优化分配(5)——随机规划模型的上下界

上篇实现了随机规划模型后,这篇谈一谈如何收缩随机规划的解空间以加快求解速率。首先为了便于理解我们将手术分配的表格绘制出来:

X1=

X2=

X3=

X4=

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

加班时长

o11=

o12=

o13=

o14=

o21=

o22=

o23=

o24=

o33=

o32=

o33=

o34=

有颜色的格子是决策变量,随机规划的目的是找到一种分配方式,使得所有场景下的总成本最小,此时每种场景都对应着一种不同的加班方案。

首先,在确定性模型(DORA)中的打破对称性方法适用于随机规划版本,打破对称性详见“手术的最优化分配(2)——打破对称性的约束(Symmetry-Breaking Constraints) (qq.com)”。

手术室开放数的上下限

与“手术的最优化分配(3)——手术室开放数目上下限及手术分配的启发式算法 (qq.com)”中原理类似,随机规划模型中手术室开放的上下限为:

其中,\overline{d_i} (di上划线) 表示此时所有场景中每个d_i对应的最大取值,\underline{d_i} (di下划线)表示所有场景中d_i的最小取值,例如在上一章的例子中,十台手术三个场景,则第五行和第六行分别为此时的\overline{d_i}和\underline{d_i}:

d1210151148167149245235233229180
d213319911928313687235250258199
d312012318716724216321420723585
_di210199187283242245235250258199
di_1201231191671368721420722985

由于原理与确定模型中上下限基本类似,此处不再赘述。

目标函数(成本)的上下限

此时假设μi为第i台手术在所有场景下的平均值,例如上表中μ_1为(210+133+120)/ 3  =154.33,则此时总成本的上下限为:

不等式的左侧很好理解,c^f为开放一间手术室的固定成本,其他部分为开放手术室数目的下限,即此时假设开放最少的手术室且不带有任何加班,当然成本是最小的。

不等式的最右侧则可以理解为只开放一间手术室,且所有手术都在加班时完成,故而成本最大。

右侧的证明过程如下:

从(19)到(20)的主要思想为:任何场景下,仅开放一间手术室的成本都是最高的。假如在某场景下需要开2间以上的手术室,则只开放一间手术室会导致大量的加班;某场景下最优解只需要开放一间手术室,则成本等于开放一间手术室(什么废话文学?)。此时仅开放一间手术室的数学表示为

手术室开放数目的上限2

手术室开放数目的第二个上限为

证明过程如下:

根据目标函数z的表达式和上一部分推导出的目标函数上限,可写出下式:

此处m^*为最优的手术室开放数目,则不等式左边为成本的上限,右侧为最优的成本。红框内为加班成本x期望加班时长,为非负数​。所以不等式右侧减去一个非负数依然小于左侧。

将剩下的不等式左右两侧同时÷c^f,则可得出

即为U_s^2

将以上四个式子和打破对称性约束加入随机规划模型后,可以大大提高求解效率​。篇幅所限就不在这里展示了,从下一篇开始我们会进入文中真正的重头戏——鲁棒优化部分​。虽然我还没有学相关内容,但是敬请期待​!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值