YOLOv5改进涨点专栏
文章平均质量分 77
专栏将持续复现机器视觉各顶会文章,并对部分改进方法进行实际项目部署验证,订阅本栏可提供一定的实际项目指导,用于论文写作!!!!!!!
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Dropout~~
这个作者很懒,什么都没留下…
展开
-
YOLOv5改进系列:升级版ResNet的新主干网络DenseNet
本文主要工作包括DenseNet介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-30 16:23:11 · 525 阅读 · 0 评论 -
YOLOv5改进系列:小众但新颖的骨干网络ConvMixer助力涨点
本文主要工作包括ConvMixer介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-30 16:04:53 · 290 阅读 · 0 评论 -
YOLOv5改进系列:主干ConvNeXTV2结构助力涨点
本文主要工作包括ConvNeXTV2介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-26 14:46:24 · 544 阅读 · 0 评论 -
YOLOv5改进系列:DAMO-YOLO新型主干网络CReToNeXt结构助力涨点
本文主要工作包括DAMO-YOLO新型主干网络CReToNeXt介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-26 14:26:30 · 221 阅读 · 0 评论 -
YOLOv5改进系列:新的颈部Eff-QAFPN(Efficientrep)结构助力涨点
本文主要工作包括Eff-QAFPN介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 19:55:02 · 159 阅读 · 0 评论 -
YOLOv5改进系列:Efficientrep结构助力涨点
本文主要工作包括GhostNetV2介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 19:50:14 · 161 阅读 · 0 评论 -
YOLOv5改进系列:长距离注意力轻量化主干GhostNetV2结构助力降参涨点
本文主要工作包括GhostNetV2介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 13:40:46 · 362 阅读 · 0 评论 -
YOLOv5改进系列:轻量化主干MobileVIT2结构助力降参涨点
本文主要工作包括MobileVIT2介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 11:16:33 · 643 阅读 · 2 评论 -
YOLOv5改进系列:轻量化主干MobileVIT3结构助力降参涨点
本文主要工作包括MobileVIT3介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 11:04:00 · 610 阅读 · 1 评论 -
YOLOv5改进系列:轻量化主干MobileVIT结构助力降参涨点
本文主要工作包括MobileVIT介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-20 10:40:32 · 273 阅读 · 1 评论 -
YOLOv5改进系列:DWRSeg扩张式残差助力涨点
本文主要工作包括C3DWRSeg介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-12 13:51:12 · 815 阅读 · 1 评论 -
YOLOv5改进系列:RT-DETR的实时检测Transformer
一、论文理论论文地址:DETRs Beat YOLOs on Real-time Object Detection1.理论思想RT-DETR的实时检测Transformer,是第一个实时端到端目标检测器。该方法通过设计高效的混合编码器和IoU感知的查询选择,有效处理多尺度特征,并支持灵活调整推断速度,无需重新训练。2.创新点(1)Backbone: 采用了经典的ResNet和百度自研的HGNet-v2两种,backbone是可以Scaled,HGNetv2的L和X两个版本,也分别对原创 2024-03-12 11:40:35 · 353 阅读 · 2 评论 -
YOLOv5改进系列:尺寸内特征交互AIFI模块改进标准Conv替换SPPF
本文主要工作包括AIFI介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-12 10:28:25 · 605 阅读 · 1 评论 -
YOLOv5改进系列:新的空间金字塔池化FocalModulation模块取代SPPF模块
本文主要工作包括FocalModulation介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-11 22:26:40 · 777 阅读 · 1 评论 -
YOLOv5改进系列:减少通道的空间对象注意力机制RCS-OSA助力涨点
本文主要工作包括RCSOSA介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-10 21:17:34 · 968 阅读 · 1 评论 -
YOLOv5改进系列:三重注意力机制TripleAttention助力涨点
本文主要工作包括三重注意力机制原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-09 23:21:01 · 799 阅读 · 0 评论 -
YOLOv5改进系列:DiverseBranchBlock(DBB)多分支结构助力涨点
本文主要工作包括DBB原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-09 13:57:08 · 700 阅读 · 0 评论 -
YOLOv5改进系列:可变形注意力机制DAT
本文主要工作包括DAT原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-09 00:17:20 · 559 阅读 · 0 评论 -
YOLOv5改进系列:新的上采样方法CARAFE助力涨点
本文主要工作包括CARAFE原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-08 12:18:57 · 1037 阅读 · 1 评论 -
YOLOv5改进系列:轻量化GSConv助力降参提点
本文主要工作包括GSConv原理介绍及提供GSConv改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-06 14:08:25 · 1618 阅读 · 2 评论 -
YOLOv5改进系列:RepLKNet打破传统调参观念,对kernel size调整
本文主要工作包括replkdext原理介绍及提供replkdext改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-07 11:07:12 · 404 阅读 · 1 评论 -
YOLOv5改进系列:感受野注意力RFA改进的卷积操作RFAConv
本文主要工作包括RFA原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-06 10:57:13 · 1105 阅读 · 1 评论 -
YOLOv5改进系列:SPD-Conv空间深度转换卷积助力模型小目标大幅涨点
本文主要工作包括SPDConv原理介绍及改进代码策略,该模块为即插即用模块,部署位置可根据实际针对任务需求,自行调整。本专栏持续更新中,订阅本栏,关注更新~原创 2024-03-05 20:23:39 · 1249 阅读 · 0 评论 -
HorNet+YOLOv5改进方案
【代码】HorNet+YOLOv5改进方案。原创 2022-11-06 20:08:02 · 3709 阅读 · 19 评论 -
YOLOv5改进系列:轻量化可变形AKConv助力降参提点
本文提出的AKConv可变形卷积用于解决标准卷积针对不同大小目标的采样形式固定等问题,设计一种新的坐标生成算法为任意大小的卷积核定义初始位置,为适应不同大小目标,引入偏移量来调整每个位置的样本形状,通过设置不同形状和任意参数的卷积核来提取特征,使其更适合应用于实际工业项目中。(1)可变卷积核设计:针对不同大小目标,改变卷积核的参数量从而调整卷积核的形状大小,提取不同目标特征。(2)初始采样坐标算法:针对不同大小目标,自适应生成不同初始采样点,提高针对不同目标的处理精度。下图为AKConv结构图。原创 2024-03-05 16:42:06 · 848 阅读 · 0 评论