YOLOv5改进系列:感受野注意力RFA改进的卷积操作RFAConv

本文介绍了RFAConv,一种结合空间注意力机制与卷积操作的方法,旨在提高卷积神经网络对图像局部特征的理解和提取精度。论文通过动态调整感受野并解决卷积核参数共享问题,实现每个感受野的独特卷积核。提供了代码部署指南,包括在YOLOv5模型中的应用和配置教程。
摘要由CSDN通过智能技术生成

一、RFAConv论文理论

本文主要是将空间注意力机制的焦点从空间特征转移到感受野空间特征上,将空间注意力机制与卷积操作相结合,从而有效理解处理图像中的局部特征信息,提高特征提取精确性。

论文地址:RFAConv: Innovating Spatial Attention and Standard Convolutional Operation

1.理论思想

解决问题:解决卷积核参数共享,注意权重在每个感受野特征中进行共享

2.创新点

(1)根据输入数据的特点,动态调整感受野,为不同尺寸和区域感受野提供不同处理;

(2)解决参数共享问题,利用空间注意力机制确定感受野中每个位置的重要性,调

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值