一、论文理论
论文地址:DAMO-YOLO : A Report on Real-Time Object Detection Design
1.理论思想
2.创新点
使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。
提出了高效的RepGFPN作为颈部,可以更好地融合不同尺度的语义和空间特征。
使用了ZeroHead,只保留每个损失函数对应的一个任务投影层,可以最大限度地节省计算开销。
提出了AlignedOTA标签分配方法,可以平衡分类和回归的重要性,部分解决目标检测中的错位问题。
引入了知识蒸馏技术,可以进一步提升小模型的性能