YOLOv5改进系列:DAMO-YOLO新型主干网络CReToNeXt结构助力涨点

本文介绍了DAMO-YOLO在YOLO系列中的改进,包括采用MAE-NAS搜索优化网络结构,使用RepGFPN增强特征融合,应用ZeroHead节省计算资源,提出AlignedOTA解决错位问题,并通过知识蒸馏提升小模型性能。详细阐述了代码部署过程,如在models目录中的修改和yaml文件配置。
摘要由CSDN通过智能技术生成

一、论文理论

论文地址:DAMO-YOLO : A Report on Real-Time Object Detection Design

1.理论思想

2.创新点

使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。

提出了高效的RepGFPN作为颈部,可以更好地融合不同尺度的语义和空间特征。

使用了ZeroHead,只保留每个损失函数对应的一个任务投影层,可以最大限度地节省计算开销。

提出了AlignedOTA标签分配方法,可以平衡分类和回归的重要性,部分解决目标检测中的错位问题。

引入了知识蒸馏技术,可以进一步提升小模型的性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值