2023五一数学建模A题完整思路

文章探讨了无人机在物流投送和爆破作业中的数学建模问题,涉及飞行高度、速度、空气阻力、风速等因素对投放和发射距离的影响。通过建立动力学模型,分析了不同风向条件下的投放策略,并讨论了无人机飞行稳定性与命中精度的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已更新五一数学建模A题思路,文章末尾获取!

 

A题完整思路:

A题是一个动力学问题,需要我们将物理学概念运用到实际生活中,我们可以先看题目

问题1: 假设无人机以平行于水平面的方式飞行,在空中投放物资(物资为球形,半径20cm,重量50kg)到达地面指定位置。

(1)建立数学模型,给出无人机投放距离(投放物资时无人机与地面物资指定落地点之间的直线距离)与无人机飞行高度、飞行速度、空气阻力等之间的关系。

我们可以使用自由落体运动和抛物线运动的原理来建立数学模型。在此模型中,我们需要考虑无人机的飞行高度(h)、飞行速度(v0)、空气阻力(k)以及投放距离(d)之间的关系。假设物资的质量为m,重力加速度为g,投放时刻物资的水平速度为vx0,竖直速度为vy0。

首先,我们来考虑竖直方向上的运动。物资受到重力和空气阻力的作用,运动方程可以表示为:

 我们需要求解这个微分方程,得到物资在竖直方向上的速度随时间的变化关系vy(t)

然后我们可以通过求解物资的竖直运动方程来得到物资的落地时间:

当物资落地时,h(t) = 0,我们可以求解出落地时间t。

接下来,考虑物资在水平方向上的运动。物资受到空气阻力的作用,运动方程可以表示为:

 我们需要求解这个微分方程,得到物资在水平方向上的速度随时间的变化关系vx(t)。然后我们可以通过求解物资的水平运动方程来得到物资在水平方向上的位移:

 最后,我们将t代入d(t)中,得到投放距离d。

(2)假设无人机的飞行高度为300m,飞行速度为300km/h,风速为5m/s,风向与水平面平行。建立数学模型,分别给出无人机飞行方向与风向相同(夹角为0度)、相反(夹角为180度)、垂直(夹角为90度)情况下无人机的投放距离。

根据题目给定的条件,我们可以将具体数值代入模型中,分别计算出不同风向条件下的投放距离。由于风速和风向会影响空气阻力和物资的水平速度,我们需要根据风向调整模型中的参数。以下是三种情况的计算方法:

当夹角为0度(风向与无人机飞行方向相同): 在这种情况下,风速会使物资的水平速度增加。因此,在水平方向上的初始速度为:

 vx0=v0+风速

夹角为180度(风向与无人机飞行方向相反): 在这种情况下,风速会使物资的水平速度减小。因此,在水平方向上的初始速度为:

vx0=v0-风速

夹角为90度(风向与无人机飞行方向垂直): 在这种情况下,风速不会改变物资的水平速度,但会对物资产生横向位移。我们可以在模型中加入横向速度的影响。因此,在水平方向上的初始速度为:

vx0=v0

问题2无人机不仅能定点投放物资,而且还可以通过安装在无人机前端的发射筒发射爆炸物疏通河道。其大致过程是:无人机首先水平飞行接近障碍物所处区域,然后俯冲找准时机发射爆炸物,发射结束后无人机随即拉升飞走。现有一处河流被冰块堆积阻断,需要用无人机发射爆炸物(爆炸物为球形,半径8cm,重量5kg)对目标进行爆破。假设无人机的初始点到目标的水平距离为10000m。受环境影响,无人机必须俯冲发射,并且发射方向与无人机的飞行方向一致。

建立数学模型,给出无人机发射距离(发射点与目标的直线距离)与无人机的飞行高度、飞行速度、俯冲角度及发射速度等因素之间的关系。

解答:我们可以采用类似问题1中的方法,利用物理学原理建立数学模型。在此模型中,我们需要考虑无人机的飞行高度(h)、飞行速度(v0)、俯冲角度(θ)、发射速度(v1)以及发射距离(d)之间的关系。假设发射时刻爆炸物的水平速度为vx0,竖直速度为vy0。

首先,我们需要将无人机的飞行速度和发射速度转换为水平和竖直方向上的速度分量。设无人机俯冲角度为θ,则:

接下来,我们可以分别考虑爆炸物在水平和竖直方向上的运动。与问题1类似,我们需要求解爆炸物在竖直方向上的运动方程,得到落地时间t。然后,我们可以通过求解爆炸物在水平方向上的运动方程来得到爆炸物在水平方向上的位移,即发射距离d。

最后,我们将t代入d中,得到发射距离d与无人机的飞行高度、飞行速度、俯冲角度及发射速度等因素之间的关系。

(2)假设风速为6m/s,无人机接近目标时的飞行高度为800m、飞行速度为300km/h,爆炸物的发射速度为600km/h(相对于无人机的速度)。要求发射爆炸物时无人机与目标的距离在1000 m-3000 m之间,且无人机的高度不低于300m,请给出无人机击中目标的发射策略。

根据题目给定的条件,我们把具体数值代入模型中。先选择一个合适的俯冲角度θ,使得无人机在发射爆炸物时满足高度不低于300m的要求。在这个过程中,我们可以通过迭代法或其他优化方法来寻找最优的θ。

确定了合适的俯冲角度θ后,把它其代入模型中,计算出发射距离d。接下来,我们需要确定无人机与目标的距离在1000m-3000m之间。我们可以根据给定的飞行高度、飞行速度、发射速度和风速,通过模型计算出满足条件的无人机与目标的距离范围。在找到满足条件的距离范围后,我们可以根据实际情况选择一个最佳的发射策略。例如,选择距离较近的发射点以提高命中概率,或者选择距离较远的发射点以确保无人机的安全。

问题3:无人机发射爆炸物命中目标的精度与无人机飞行的稳定性有很大关系。相同条件下,无人机发射爆炸物时越稳定,命中目标的精度越高。开始俯冲后,无人机操控员需要不断调整无人机的飞行姿态以修正风向、风速对无人机的影响。

  1. 在飞行速度、发射速度一定的情况下,综合考虑各种因素,建立数学模型,量化无人机飞行的稳定性,给出稳定性与命中精度之间的关系,并利用数值仿真等方法对无人机的稳定性进行分析验证。

要去量化无人机飞行的稳定性,我们引入一个稳定性参数S。S可以通过以下几个因素来描述:无人机的飞行速度(v0)、俯冲角度(θ)、风速(w)以及风向与无人机飞行方向的夹角(α)。稳定性参数S的计算方法可以使用基于物理原理的动力学模型,或者使用机器学习等数据驱动的方法根据历史数据进行拟合。

稳定性参数S与命中精度之间的关系可以通过建立概率模型来描述。例如,我们可以假设命中精度P与稳定性参数S之间存在如下关系:

P = f(S)

其中,f为关系函数。我们可以通过分析实验数据或者利用数值仿真等方法来确定f的具体形式。

 

更多思路↓↓

2021五一数模A思路+参考资料+a代码疫苗生产优化问 1:本需要对于每箱疫苗在所有工位上的生产时间进行描述性统计分析,由于先前对于 不同类型的疫苗进行模拟实验,根据已经掌握的实验数据直接进行描述性分析即可。可以通过 EXCEL、SPSS、R 语言等数据处理软件直接进行分析,建议分析完成之后分别对于均值、方差、 最值、概率分布等不同的指标解释其数理意义以及描述不同工位生产疫苗的能力水平,方便为下一 步的研究打基础。难点在于数据的处理。 问 2:根据附件中所给出的数据,先对其所有的数据求出平均值。将平均值作为参考指标。 目中原先说明必须按照 CJ1-CJ2-CJ3-CJ4 的顺序完成 4 个工位都进行了加工才算加工完成。当一 种疫苗进入生产步骤之后,必须完成该步骤的生产才可以安排下一种疫苗进入。由于目标函数是实 现生产时间最短,本提供两种可选方案,原理相通。一、可以选择使用 LINGO 软件安排最优线 路,设定每一个步骤所需要实现的时间长短以及该疫苗所需要完成加工的总时间,尽可能实现每一 个加工步骤都有不同类型的疫苗在进行加工,如果每一个加工步骤都能保证中间加工的空挡不断层, 即可实现加工效率的最优化。二、最优化算法中可以使用 TSP 算法安排最优的线路,通过该算法 也可以获得最优的加工顺序。要点在于本选用生产的平均值作为参考指标,大大降低了计算步骤 的难度。难点在于计算好每一类型的疫苗加工生产过程中所需要的总时间和不同加工步骤之间相距 的时间差的,其中的变量在于不同的疫苗进入加工步骤的顺序。加工步骤不可以变动顺序。 问 3:本与问 2 最明显的区别就是每个工位生产疫苗的时间不再使用平均值来进行代替 了。问 1 种研究了不同的指标来反映不同工位生产疫苗的能力水平,可以在其中进行选取即可完 成时间变量的选择。目要求交货总时间比问 2 的总时间缩短 5%,即在原先问的基础之上进 行优化目标。根据优化算法来进行生产顺序调度安排,本建议使用禁忌搜索算法来寻求最优解, 该算法可以避免陷入局部最优。求解过程与问 2 相近,不再赘述。确定完成生产顺序之后,由于 生产的每一个过程中的时间并不是一个确定值,而是分布于一个相近的区间内,所以可以通过区间 估计来确定概率数值。本也可以使用遗传算法进行求解,确定完成遗传算法的变异率,通过代码 的计算可以完成。 问 4:本再次引入新的限制条件,限制生产条件和生产时间。每一天时间长度为 16 小时, 且要求必须完成某一种疫苗的全部生产过程才可以开始生产别的种类的疫苗。生产时间长度可以使 用问一中给出的相关指标变量从而确定单一产品的时间。当确定完成时间之后,分别对于所有的 产品生产的时间进行计算即可得出所需要的生产时间。时间指标可以是一个变动的过程,由于生产 的时间必须为天数的整数单位(达不到一天按一天计算,若一天内能完成两项任务,可以一天安排 两种疫苗的生产),生产任务不可以拆分,所以需要读者有耐心选择正确的计算方法计算出不同疫 苗产品的生产时间以及规划不同疫苗的生产周期。由于已经限定了可靠性为 90%,生产时间最短 即可。使用不同疫苗产品的生产总时间作为目标变量,通过调动不同的疫苗产品作为自变量的生产 过程,确定约束条件即可计算出预期时间。 问 5:安排生产计划是一项运筹规划类型目。根据附件给出的不同疫苗产品的报价、生产 疫苗所需要的时间、不同产品疫苗的最大任务数量进行线性规划,难点在于线性规划的约束条件是 函数关系,根据生产单一疫苗所需要的时间进行确定相关参数。销售额=疫苗的出厂价格×出厂数 量,则控制不同的疫苗的产量可以通过神经网络模型等深度学习算法进行自动求解。规划模型的条 件和生产的顺序可以通过模型计算过程自动求得最优解。由于神经网络模型自身容易陷入局部收敛 的死循环中,可以加入优化算法对该模型进行优化。切记全文所使用的优化算法一定不能重复。可 以参考:遗传算法、蚁群算法、粒子群算法等。 备注:由于生产过程的不确定性,所以生产单一疫苗的时间确定需要根据实际模拟的数据进行 确定。目中问 2 要求使用平均值进行确定,别的目仍然可以使用,但是有能力的话建议使用 别的指标进行确定。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值