2025年第二十二届五一数学建模竞赛题目 A题 支路车流量推测问题2025五一杯数学建模 思路详细代码

问题1:Y型道路支路车流量推测

问题分析

问题1描述了一个Y型道路结构,两条支路(支路1和支路2)汇入主路3。主路3上安装了监测设备A1,每2分钟记录一次车流量数据。我们需要根据主路车流量数据和支路车流量的历史趋势,推测两条支路的车流量随时间变化的函数表达式。

已知条件:

  1. 支路1车流量在[6:58,8:58]内呈现线性增长趋势
  2. 支路2车流量先线性增长后线性减少
  3. 主路车流量是两条支路车流量的总和

数学模型建立

设:

  • 支路1车流量函数:f₁(t) = a₁t + b₁

  • 支路2车流量函数:分段线性函数,设转折点为t₀

    • t ≤ t₀: f₂(t) = a₂t + b₂
    • t > t₀: f₂(t) = a₃t + b₃

主路车流量:F(t) = f₁(t) + f₂(t)

参数估计方法

  1. 首先观察主路车流量数据,发现大约在t=30(8:00)时车流量达到峰值后开始下降,可以初步估计t₀=30
  2. 将问题分为两个阶段(t≤30和t
2021五一数模A思路+参考资料+a代码疫苗生产优化问题 问题 1:本需要对于每箱疫苗在所有工位上的生产时间进行描述性统计分析,由于先前对于 不同类型的疫苗进行模拟实验,根据已经掌握的实验数据直接进行描述性分析即可。可以通过 EXCEL、SPSS、R 语言等数据处理软件直接进行分析,建议分析完成之后分别对于均值、方差、 最值、概率分布等不同的指标解释其数理意义以及描述不同工位生产疫苗的能力水平,方便为下一 步的研究打基础。难点在于数据的处理。 问题 2:根据附件中所给出的数据,先对其所有的数据求出平均值。将平均值作为参考指标。 题目中原先说明必须按照 CJ1-CJ2-CJ3-CJ4 的顺序完成 4 个工位都进行了加工才算加工完成。当一 种疫苗进入生产步骤之后,必须完成该步骤的生产才可以安排下一种疫苗进入。由于目标函数是实 现生产时间最短,本提供两种可选方案,原理相通。一、可以选择使用 LINGO 软件安排最优线 路,设定每一个步骤所需要实现的时间长短以及该疫苗所需要完成加工的总时间,尽可能实现每一 个加工步骤都有不同类型的疫苗在进行加工,如果每一个加工步骤都能保证中间加工的空挡不断层, 即可实现加工效率的最优化。二、最优化算法中可以使用 TSP 算法安排最优的线路,通过该算法 也可以获得最优的加工顺序。要点在于本选用生产的平均值作为参考指标,大大降低了计算步骤 的难度。难点在于计算好每一类型的疫苗加工生产过程中所需要的总时间和不同加工步骤之间相距 的时间差的,其中的变量在于不同的疫苗进入加工步骤的顺序。加工步骤不可以变动顺序。 问题 3:本问题 2 最明显的区别就是每个工位生产疫苗的时间不再使用平均值来进行代替 了。问题 1 种研究了不同的指标来反映不同工位生产疫苗的能力水平,可以在其中进行选取即可完 成时间变量的选择。题目要求交货总时间比问题 2 的总时间缩短 5%,即在原先问题的基础之上进 行优化目标。根据优化算法来进行生产顺序调度安排,本建议使用禁忌搜索算法来寻求最优解, 该算法可以避免陷入局部最优。求解过程与问题 2 相近,不再赘述。确定完成生产顺序之后,由于 生产的每一个过程中的时间并不是一个确定值,而是分布于一个相近的区间内,所以可以通过区间 估计来确定概率数值。本也可以使用遗传算法进行求解,确定完成遗传算法的变异率,通过代码 的计算可以完成。 问题 4:本再次引入新的限制条件,限制生产条件和生产时间。每一天时间长度为 16 小时, 且要求必须完成某一种疫苗的全部生产过程才可以开始生产别的种类的疫苗。生产时间长度可以使 用问题一中给出的相关指标变量从而确定单一产品的时间。当确定完成时间之后,分别对于所有的 产品生产的时间进行计算即可得出所需要的生产时间。时间指标可以是一个变动的过程,由于生产 的时间必须为天数的整数单位(达不到一天按一天计算,若一天内能完成两项任务,可以一天安排 两种疫苗的生产),生产任务不可以拆分,所以需要读者有耐心选择正确的计算方法计算出不同疫 苗产品的生产时间以及规划不同疫苗的生产周期。由于已经限定了可靠性为 90%,生产时间最短 即可。使用不同疫苗产品的生产总时间作为目标变量,通过调动不同的疫苗产品作为自变量的生产 过程,确定约束条件即可计算出预期时间。 问题 5:安排生产计划是一项运筹规划类型题目。根据附件给出的不同疫苗产品的报价、生产 疫苗所需要的时间、不同产品疫苗的最大任务数量进行线性规划,难点在于线性规划的约束条件是 函数关系,根据生产单一疫苗所需要的时间进行确定相关参数。销售额=疫苗的出厂价格×出厂数 量,则控制不同的疫苗的产量可以通过神经网络模型等深度学习算法进行自动求解。规划模型的条 件和生产的顺序可以通过模型计算过程自动求得最优解。由于神经网络模型自身容易陷入局部收敛 的死循环中,可以加入优化算法对该模型进行优化。切记全文所使用的优化算法一定不能重复。可 以参考:遗传算法、蚁群算法、粒子群算法等。 备注:由于生产过程的不确定性,所以生产单一疫苗的时间确定需要根据实际模拟的数据进行 确定。题目问题 2 要求使用平均值进行确定,别的题目仍然可以使用,但是有能力的话建议使用 别的指标进行确定。
2023“深圳数学建模挑战赛C涉及的问题是如何合理规划城市道路交通网络。为了解决这个问题,我们需要综合考虑以下几个因素。 首先,我们需要对城市进行合理的划分。我们可以根据人口分布、经济发展区域、交通需求等因素,划分城市为不同的区域。这样可以更好地了解每个区域的特点和需求,为道路规划提供参考。 其次,我们需要考虑城市的主干道路布局。主干道路是连接各个区域之间的重要通道,应该经过合理规划和布置。我们可以通过分析各个区域之间的交通流量和距离,选择合适的道路来连接这些区域,从而减少交通堵塞和行车时间。 第三,我们应该考虑城市的次干道路和支路的布置。次干道路和支路是连接主干道路和居民区的重要组成部分,应该与主干道路相结合,形成一个完整的道路网。在布置次干道路和支路时,我们可以考虑到主要的交通枢纽、居民区、商业区等因素,以满足不同区域的交通需求。 另外,我们还应该考虑公共交通的布置和发展。公共交通是解决城市交通问题的重要手段之一。我们可以通过合理规划公交线路、增加公交站点和提升公交服务质量,鼓励市民使用公共交通,减少私家车使用,缓解交通压力。 最后,我们还需要考虑交通规划的可持续性和灵活性。在进行道路规划时,我们应该注重环保和资源节约,促进可持续交通发展。同时,我们也应该有一定的灵活性,随时根据城市发展和需求变化进行相应调整和优化。 总之,合理规划城市道路交通网络是一个复杂而又重要的问题。我们需要综合考虑各种因素,并注重可持续性和灵活性,以实现交通效率的提升和城市交通的便捷性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值