You Only Look Once: Unified, Real-Time Object Detection

转载 2017年01月03日 11:42:57

参考链接: http://blog.csdn.net/tangwei2014

这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。 
虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题。 
其增强版本GPU中能跑45fps,简化版本155fps。

论文下载:http://arxiv.org/abs/1506.02640 
代码下载:https://github.com/pjreddie/darknet

本篇博文focus到方法上。实验结果等整理全了再奉上。 
1. YOLO的核心思想

  • YOLO的核心思想就是利用整张图作为网络的输入,直接在输出层回归bounding box的位置和bounding box所属的类别。

  • 没记错的话faster RCNN中也直接用整张图作为输入,但是faster-RCNN整体还是采用了RCNN那种 proposal+classifier的思想,只不过是将提取proposal的步骤放在CNN中实现了。

2.YOLO的实现方法

  • 将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。 
    这里写图片描述
  • 每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。 
    这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的: 
     
    其中如果有object落在一个grid cell里,第一项取1,否则取0。 第二项是预测的bounding box和实际的groundtruth之间的IoU值。

  • 每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。则SxS个网格,每个网格要预测B个bounding box还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。 
    注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。

  • 举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。 
    整个网络结构如下图所示: 

  • 在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score: 
    这里写图片描述
    等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

  • 得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS处理,就得到最终的检测结果。

3.YOLO的实现细节

  • 每个grid有30维,这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。 
    其中坐标的x,y用对应网格的offset归一化到0-1之间,w,h用图像的width和height归一化到0-1之间。

  • 在实现中,最主要的就是怎么设计损失函数,让这个三个方面得到很好的平衡。作者简单粗暴的全部采用了sum-squared error loss来做这件事。
    这种做法存在以下几个问题: 
    第一,8维的localization error和20维的classification error同等重要显然是不合理的; 
    第二,如果一个网格中没有object(一幅图中这种网格很多),那么就会将这些网格中的box的confidence push到0,相比于较少的有object的网格,这种做法是overpowering的,这会导致网络不稳定甚至发散。 
    解决办法:

    • 更重视8维的坐标预测,给这些损失前面赋予更大的loss weight, 记为在pascal VOC训练中取5。
    • 对没有object的box的confidence loss,赋予小的loss weight,记为在pascal VOC训练中取0.5。
    • 有object的box的confidence loss和类别的loss的loss weight正常取1。
  • 对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。 
    为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。 

  • 一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

  • 最后整个的损失函数如下所示: 
    这里写图片描述
    这个损失函数中: 
    • 只有当某个网格中有object的时候才对classification error进行惩罚。
    • 只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
  • 其他细节,例如使用激活函数使用leak RELU,模型用ImageNet预训练等等,在这里就不一一赘述了。

4.YOLO的缺点

  • YOLO对相互靠的很近的物体,还有很小的群体 检测效果不好,这是因为一个网格中只预测了两个框,并且只属于一类。

  • 测试图像中,同一类物体出现的新的不常见的长宽比和其他情况是。泛化能力偏弱。

  • 由于损失函数的问题,定位误差是影响检测效果的主要原因。尤其是大小物体的处理上,还有待加强。

举报

相关文章推荐

论文提要“You Only Look Once: Unified, Real-Time Object Detection”

项目主页:http://pjreddie.com/darknet/yolo/这篇文章着重在检测的速度提升,区别于之前的方法是用分类器来做检测,文章对bbox和对应的类概率进行回归,检测速度可以达到45...

对论文 You Only Look Once: Unified, Real-Time Object Detection 的理解 (一)

本文转载自: http://blog.csdn.net/surgewong/article/details/51864859 背景介绍    在深度神经网络之前,...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

论文笔记 You Only Look Once: Unified, Real-Time Object Detection

今天注意到同组小伙伴写的YOLO的笔记,十分详细,内容丰富,特地和他说了后转载,留着自己也学习一下。相比我之前介绍的YOLO笔记,他的介绍更适合仔细学习,而我原来的适合整体了解。同时,许多训练时的情况...

论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大...

论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大...

YOLO:You Only Look Once: Unified, Real-Time Object Detection论文总结

一、摘要 之前的目标检测分方法都是通过各种方式将回归问题转化成分类问题解决,作者通过空间划分的包围盒以及相关类概率将目标检测直接设计成回归问题。作者使用了一个单独的神经网络来直接一次性从整张图像上预...

论文阅读:You Only Look Once: Unified, Real-Time Object Detection

这篇今年 CVPR 2016 年的检测文章 YOLO,我之前写过这篇文章的解读。但因为不小心在 Markdown 编辑器中编辑时删除了。幸好同组的伙伴转载了我的,我就直接考过来了。以后得给自己的博文留...

文献笔记 You Only Look Once:Unified, Real-Time Object Detection

2016_CVPR 文章:You Only Look Once:Unified, Real-Time Object Detection 作为深度学习大神 rbg 的又一篇 2016CVPR 论文,迫不...

论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection

1. YOLO的核心思想 2. YOLO的实现方法 3. YOLO的训练技术细节 4. YOLO的缺点

论文提要“You Only Look Once: Unified, Real-Time Object Detection”

转载于:http://blog.csdn.net/cv_family_z/article/details/46803421 版权归原作者所有. 项目主页:http://pjreddie.c...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)